The effect of the addition of nystatin, miconazole, ketoconazole, chlorhexidine, and itraconazole into the soft lining materials Softone and Trusoft on their peel bond strength to a denture base acrylic resin was evaluated. Specimens of soft lining materials (n=7) were made without (control) or with the incorporation of antifungals at their minimum inhibitory concentrations to the biofilm of C. albicans and bonded to the acrylic resin. Peel testing was performed after immersion in distilled water at 37ºC for 24 h, 7 and 14 days. Data (MPa) were analyzed by 3-way ANOVA/Tukey-Kramer test (α=0.05) and the failure modes were classified. The addition of nystatin and ketoconazole did not affect the peel bond strength for up to 14 days. Most failures were predominantly cohesive within soft lining materials. With the exception of itraconazole, incorporating the antifungals into the soft lining materials did not result in values below those recommended for peel bond strength after 7 and 14 days of analysis.
The individual master impressions, the molar teeth coverage, and the method of cementation with nonadhesive composite resin provided good stability for the palatal plate showed in this study, not disturbing the eating habits and nutrition of the animals. This model seems reproducible, offering adequate histopathological evaluation. Differences in tissue morphology exist between the animals that used the palatal plate and the animals that did not use this device. Use of these palatal plates could clarify how prostheses bring changes in the palatal mucosa of users.
This study assessed the cytotoxicity of antimicrobial Photodynamic Inactivation (aPDI), mediated by curcumin, using human keratinocytes co-cultured with Candida albicans. Cells and microorganisms were grown separately for 24 hours and then kept in contact for an additional 24 hours. After this period, aPDI was applied. The conditions tested were: P+L+ (experimental group aPDI); P-L+ (light emitting diode [LED] group); P+L- (curcumin group); and P-L- (cells in co-culture without curcumin nor LED). In addition, keratinocytes and C. albicans were grown separately, were not placed in the co-culture and did not receive aPDI (control group). Cell proliferation was assessed using Alamar Blue, MTT, XTT and CFU tests. Qualitative and quantitative analyses were performed. Analysis of variance (ANOVA) was applied to the survival percentages of cells compared to the control group (considered as 100% viability), complemented by multiple comparisons using Tukey's test. A 5% significance level was adopted. The results of this study showed no interference in the metabolism of the cells in co-culture, since no differences were observed between the control group (cultured cells by themselves) and the P-L- group (co-culture cells without aPDI). The aPDI group reached the highest reduction (p = 0.009), which was equivalent to 1.7 log10 when compared to the control group. The P+L-, P-L+, P-L- and control groups were not statistically different (ρ > 0.05). aPDI inhibited the growth of keratinocytes and C. albicans in all tests, so the therapy was considered slightly (inhibition between 25 and 50% compared to the control group) to moderately (inhibition between 50 and 75% compared to the control group) cytotoxic.
Purpose. This study evaluated the cytotoxicity of antimicrobial silver tungstate (Ag2WO4) or silver molybdate (Ag2MoO4) microcrystals coating biomaterials. Materials and Methods. The coating procedure was performed onto titanium, zirconia, and acrylic resin specimens. Eluates of the coated specimens were obtained, which were used for cytotoxicity analyses, including Alamar Blue, MTT, and CytoTox-ONE tests. Data were analyzed using two-way ANOVA, followed by the Tukey test (α = 0.05). The results of each experimental group were also compared to those of the control of living cells, taken as 100% cell viability. Results. In general, it was observed that the percentage of living cells from all biomaterials coated with both microcrystals was statistically different compared to the ones from the uncoated sample groups, except for the results from MTT of specimens of Ti coated with α-Ag2MoO4. All uncoated biomaterials were classified as noncytotoxic by the three assays used in the present study. It was observed that the microcrystals in solution were strongly cytotoxic, with death of almost 100% of cells, from the analysis of the results of the Alamar Blue assay. Conclusion. The most biomaterials coated with both microcrystals showed some degree of cytotoxicity in the different assays. The results described herein should be seen as an alert to the use of microcrystals, which can expose patients to health risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.