Congenital indifference to pain (CIP) is a rare condition in which patients have severely impaired pain perception, but are otherwise essentially normal. We identified and collected DNA from individuals from nine families of seven different nationalities in which the affected individuals meet the diagnostic criteria for CIP. Using homozygosity mapping and haplotype sharing methods, we narrowed the CIP locus to chromosome 2q24-q31, a region known to contain a cluster of voltage-gated sodium channel genes. From these prioritized candidate sodium channels, we identified 10 mutations in the SCN9A gene encoding the sodium channel protein Nav1.7. The mutations completely co-segregated with the disease phenotype, and nine of these SCN9A mutations resulted in truncation and loss-of-function of the Nav1.7 channel. These genetic data further support the evidence that Nav1.7 plays an essential role in mediating pain in humans, and that SCN9A mutations identified in multiple different populations underlie CIP.
A channel involved in pain perception Voltage-gated sodium (Nav) channels propagate electrical signals in muscle cells and neurons. In humans, Nav1.7 plays a key role in pain perception. It is challenging to target a particular Nav isoform; however, arylsulfonamide antagonists selective for Nav1.7 have been reported recently. Ahuja et al. characterized the binding of these small molecules to human Nav channels. To further investigate the mechanism, they engineered a bacterial Nav channel to contain features of the Nav1.7 voltage-sensing domain that is targeted by the antagonist and determined the crystal structure of the chimera bound to an inhibitor. The structure gives insight into the mechanism of voltage sensing and will enable the design of more-selective Nav channel antagonists. Science , this issue p. 10.1126/science.aac5464
Regional abnormalities of brain connectivity may be an important substrate for the expression of schizophrenia, a severe form of mental illness. Brain imaging and postmortem morphometric studies indicate hippocampal structure is abnormal in schizophrenia. To study molecular components of hippocampal connectivity the presynaptic proteins SNAP-25 and synaptophysin were assayed in postmortem samples. Immunocytochemical studies indicated reduced SNAP-25 immunoreactivity in schizophrenia compared to controls, particularly in the terminal fields of entorhinal cortex projections. Although there were no overall changes in synaptophysin immunoreactivity, in the granule cell layer of the dentate gyrus synaptophysin immunoreactivity was increased in schizophrenia. These results indicate that disconnection of a subset of hippocampal circuitry from the entorhinal cortex, as well as intrinsic changes in hippocampal connectivity, may contribute to the mechanism of illness in schizophrenia.
The role of integrin-linked kinase (ILK), a kinase that is involved in various cellular processes, including adhesion and migration, has not been studied in primary neurons. Using mRNA dot blot and Western blot analysis of ILK in rat and human brain tissue, we found that ILK is expressed in various regions of the CNS. Immunohistochemical and immunocytochemical techniques revealed granular ILK staining that is enriched in neurons and colocalizes with the beta1 integrin subunit. The role of ILK in neurite growth promotion by NGF was studied in rat pheochromocytoma cells and dorsal root ganglion neurons using a pharmacological inhibitor of ILK (KP-392) or after overexpression of dominant-negative ILK (ILK-DN). Both molecular and pharmacological inhibition of ILK activity significantly reduced NGF-induced neurite outgrowth. Survival assays indicate that KP-392-induced suppression of neurite outgrowth occurred in the absence of cell death. ILK kinase activity was stimulated by NGF. NGF-mediated stimulation of phosphorylation of both AKT and the Tau kinase glycogen synthase kinase-3 (GSK-3) was inhibited in the presence of KP-392 and after overexpression of ILK-DN. Consequently, ILK inhibition resulted in an increase in the hyperphosphorylation of Tau, a substrate of GSK-3. Together these findings indicate that ILK is an important effector in NGF-mediated neurite outgrowth.
Selective block of Na1.7 promises to produce non-narcotic analgesic activity without motor or cognitive impairment. Several Na1.7-selective blockers have been reported, but efficacy in animal pain models required high multiples of the IC for channel block. Here, we report a target engagement assay using transgenic mice that has enabled the development of a second generation of selective Nav1.7 inhibitors that show robust analgesic activity in inflammatory and neuropathic pain models at low multiples of the IC. Like earlier arylsulfonamides, these newer acylsulfonamides target a binding site on the surface of voltage sensor domain 4 to achieve high selectivity among sodium channel isoforms and steeply state-dependent block. The improved efficacy correlates with very slow dissociation from the target channel. Chronic dosing increases compound potency about 10-fold, possibly due to reversal of sensitization arising during chronic injury, and provides efficacy that persists long after the compound has cleared from plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.