The human umbilical cord is a source of numerous Mesenchymal Stem Cells (MSCs), making it as a potential source of allogeneic multipotent cell for bone tissue engineering. The aims of this study were to find: 1) Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) phenotypic characterization, 2) The in-vitro osteogenic differentiation potential of hUCMSCs, 3) The cytotoxicity of gelatin solvent to hUCMSCs using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. As a result, through characterization of hUCMSCs, the majority of target cells expressed specific MSCs markers, Cellular Differentiation (CD)73, smaller number of subpopulation expressed CD90 with only minimal subpopulation expressed CD105 and all negative MSCs markers. Osteoblastic differentiation was found in a significantly high number of cells when in vitro osteogenic differentiation of hUCMSCs with Alizarin Red staining was done. Biocompatibility analysis using the MTT assay showed that gelatin solvent and Alpha modification of minimum essential * Corresponding author.N. Hendrijantini et al. 421medium Eagle (α-MEM) was non-toxic for hUCMSCs in vitro. The study concluded that hUCMSCs isolated from human umbilical cord was capable of undergoing in vitro osteogenesis, indicating its potential as allogeneic stem cells for clinical application in bone tissue engineering.
Background Bovine pericardium collagen membrane (BPCM) had been widely used in guided bone regeneration (GBR) whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM) was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat's subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.
Amniotic membrane of human placenta is a source of abundant mesenchymal stem cell (hAMSC) which makes it a potential source of allogeneic multipotent cell for bone healing. However, much has to be explored about its isolation procedure and the osteogenic differentiation potential. The aims of this study are to establish the procurement procedure of human amniotic membrane, the isolation and culture of hAMSC, the MSC phenotypic characterization, and the in vitro osteogenic differentiation of hAMSC. Results of the study are as follows. The quality of human amniotic membrane would be best if procured from Caesarean operation under highly aseptic condition to avoid fungal and bacterial contamination on the culture. Isolation procedure using modified Soncini protocol yielded large amount of MSC with high proliferative capacity in culture medium. Characterization of hAMSC showed that the majority of the target cells exhibited specific MSC markers (CD105 and CD90) with a small number of these cells expressing CD45, the marker of hematopoeitic cells. The in vitro osteogenic differentiation of hAMSC followed by Alizarin Red staining showed that osteoblastic differentiation was detected in a significantly high number of cells. This study concludes that hAMSCs isolated from human amniotic membrane have the capacity for in vitro osteogenesis which makes them be one of the potential allogeneic stem cells for application in maxillofacial bone reconstruction.
Background: Post-extraction dental sockets clinically resolve within a period of 3-4 weeks. However, complete healing and bundling of gingival fibers may require several months. Medication is therefore required to accelerate the healing process. Cosmos caudatus (C. caudatus), a local plant with antioxidant properties and high calcium content, has the potential to promote wound healing while also reportedly capable of strengthening bone. Previous studies have demonstrated the effectiveness of C. caudatus as an alternative treatment for post-menopausal osteoporosis by investigating the dynamic and cellular parameters of bone histomorphometry. Purpose: The study aimed to examine the citotoxicity and proliferation of human gingival fibroblast cells culture after the application of C. caudatus extract. Methods: Cultures of human gingival fibroblast cells with 5x104 cell density were divided into two groups and placed in a 30-well culture dish. The control group contained human gingival fibroblast cell culture without extract, while the experimental group consisted of human gingival fibroblast cells culture with extract. The concentrations of extract were 1200 μg/ml, 600 μg/ml, 300 μg/ml, 150 μg/ml, and 75 μg/ml. A toxicity test was conducted and the optimum concentration evaluated using an MTT assay, while fibroblast numbers on were calculated days 1 and 2 by means of a hemocytometer. Research data was analyzed using a one-way ANOVA test. Results: No toxicity was found. The optimum concentration was 600 μg/ml and fibroblast proliferation was significantly higher in the experimental group compared to the control group, p=0.002 (P<0.05). Conclusion: C. caudatus leaf extract is non-toxic and increases the proliferation of human gingival fibroblast culture at an optimum concentration of 600 μg/ml.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.