o-Phenylenediamine has been used for glucose oxidase (GOx) immobilization on Pt electrodes by electrochemical polymerization at +0.65 V vs SCE. By this approach the enzyme is entrapped in a strongly adherent, highly reproducible thin membrane, whose thickness is around 10 nm. This one-step procedure produces a glucose sensor with a response time less than 1 s, an active enzyme loading higher than 3 units/cm2 of electrode surface, a high sensitivity, and a sufficiently wide linear range. The glucose response shows an apparent Michaelis-Menten constant, K'm = 14.2 mM, and a limiting current density, jmax of 181 microA/cm2. The product kD of partition and diffusion coefficients of glucose in the polymer film is on the order of 10(-13) cm2/s. Due to permselectivity characteristics of the membrane, the access of ascorbate, a common interfering species, to the electrode surface is blocked. To our knowledge, this represents the first report of a membrane capable, at the same time, of immobilizing GOx and rejecting ascorbate. The interesting electrode behavior can be rationalized by using an existing model predicting the amperometric response of an immobilized GOx system.
The preparation and characterization of electrosynthesized poly(o-phenylenediamine) (PPD) imprinted by glucose (iPPD) is reported as the first case of an electrosynthesized polymer molecularly imprinted by a neutral template. The material is employed as the recognition element of a QCM biomimetic sensor for glucose. Scatchard analysis of the relevant calibration curve offers information on the equilibrium and binding sites involved in glucose detection. XPS comparison of PPD and iPPD supports the occurrence of a templating effect. On this basis, molecular imprinting electropolymerization is proposed as a possible strategy for the preparation of new materials with molecular recognition properties to be applied in biomimetic sensors.
This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.
An investigation on the structure of poly(o-phenylenediamine) (PPD) films, obtained by electropolymerization of oPD (1,2-diaminobenzene) on platinum at different pH values, was performed by X-ray Photoelectron Spectroscopy (XPS).XPS could be used as a ''bulk'' technique for PPD films analysis, due to their extremely low thickness. The presence of different functionalities, like primary/secondary aminic, iminic and, as minor species, oxygenated groups (carbonyl, oximes) was suggested by curve fitting of carbon (C1s) and nitrogen (N1s) XP spectra. The use of chemical derivatization reactions (CD-XPS) confirmed the presence of primary aminic and hydroxy groups, showing that NH 2 groups are present in the PPD structure even at low pH values, though their amount increases on increasing the pH of polymerization.Optical spectroscopy in the visible region was also performed on the electrolytic solutions at the end of polymerization, suggesting a higher conjugation of the oPD oligomers at low pH, which indirectly confirms XPS findings on the presence of NH 2 groups in the polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.