Understanding two-phase convective heat transfer under extreme conditions of high heat and mass fluxes and confined geometry is of fundamental interest and practical significance. In particular, next generation electronics are becoming thermally limited in performance, as integration levels increase due to the emergence of ‗hotspots' featuring up to ten-fold increase in local heat fluxes, resulting from non-uniform power distribution. An ultra-small clearance, 10 μm microgap, was investigated to gain insight into physics of high mass flux refrigerant R134a flow boiling, and to assess its utility as a practical solution for hotspot thermal management. Two configurations -a bare microgap, and inline micro-pin fin populated microgap -were tested in terms of their ability to dissipate heat fluxes approaching 1.5 kW/cm 2 . Extreme flow conditions were investigated, including mass fluxes up to 3,000 kg/m 2 s at inlet pressures up to 1.5MPa and 2 exit vapor qualities approaching unity. Dominant flow regimes were identified and correlated to two phase heat transfer coefficients obtained using model-based data reduction for both device configurations. The results obtained were compared to predictions using correlations from literature, with the maximum heat transfer coefficient reaching 1.5 MW/m 2 K in the vapor plume regime in the case of the finned microgap.
This paper reports on novel thermal testbeds with embedded micropin-fin heat sinks that were designed and microfabricated in silicon. Two micropin-fin arrays were presented, each with a nominal pin height of 200 μm and pin diameters of 90 μm and 30 μm. Single-phase and two-phase thermal testing of the micropin-fin array heat sinks were performed using de-ionized (DI) water as the coolant. The tested mass flow rate was 0.001 kg/s, and heat flux ranged from 30 W/cm2 to 470 W/cm2. The maximum heat transfer coefficient reached was 60 kW/m2 K. The results obtained from the two testbeds were compared and analyzed, showing that density of the micropin-fins has a significant impact on thermal performance. The convective thermal resistance in the single-phase region was calculated and fitted to an empirical model. The model was then used to explore the tradeoff between the electrical and thermal performance in heat sink design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.