Three-dimensional (3D) stacked electronics present significant advantages from an electrical design perspective, ranging from shorter interconnect lengths to enabling heterogeneous integration. However, multitier stacking exacerbates an already difficult thermal problem. Localized hotspots within individual tiers can provide an additional challenge when the high heat flux region is buried within the stack. Numerous investigations have been launched in the previous decade seeking to develop cooling solutions that can be integrated within the 3D stack, allowing the cooling to scale with the number of tiers in the system. Two-phase cooling is of particular interest, because the associated reduced flow rates may allow reduction in pumping power, and the saturated temperature condition of the coolant may offer enhanced device temperature uniformity. This paper presents a review of the advances in two-phase forced cooling in the past decade, with a focus on the challenges of integrating the technology in high heat flux 3D systems. A holistic approach is applied, considering not only the thermal performance of standalone cooling strategies but also coolant selection, fluidic routing, packaging, and system reliability. Finally, a cohesive approach to thermal design of an evaporative cooling based heat sink developed by the authors is presented, taking into account all of the integration considerations discussed previously. The thermal design seeks to achieve the dissipation of very large (in excess of 500 W/cm2) background heat fluxes over a large 1 cm × 1 cm chip area, as well as extreme (in excess of 2 kW/cm2) hotspot heat fluxes over small 200 μm × 200 μm areas, employing a hybrid design strategy that combines a micropin–fin heat sink for background cooling as well as localized, ultrathin microgaps for hotspot cooling.
An innovative heat sink design aimed at meeting both the hot spot and large background heat flux requirements of next generation integrated circuits is presented. The heat sink design utilizes two separate unmixed fluids to meet the cooling requirements of the chip with one fluid acting as a fluidic spreader dedicated to cooling the hot spots only, while the second fluid serves as both a coolant for the background heat fluxes and an on-chip regenerator for the hot spot fluid. In this paper the conceptual heat sink design is presented and its theoretical capabilities are explored through optimization calculations and computational fluid dynamics simulations. It has been shown that through close coupling of the two thermal fluids the proposed hybrid heat sink can theoretically remove hot spot heat fluxes on the order of 1 kW/cm2 and background heat fluxes up to 100 W/cm2 in one compact and efficient package. Additionally, it has been shown that the F2/S2 design can handle these thermal loads with a relatively small pressure drop penalty, within the realm of existing micropump technologies. Finally, the feasibility of the F2/S2 design was demonstrated experimentally by modifying a commercially available, air-cooled aluminum heat sink to accommodate an integrated hot spot cooling system and fluidic spreader. The results of these experiments, where the prototype heat sink was able to remove hot spot heat fluxes of up to 365 W/cm2 and background heat fluxes of up to 20 W/cm2, are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.