The by-product resulting from the production of the sea-buckthorn (Hippophae rhamnoides) juice may be a functional food ingredient, being a valuable source of bioactive compounds, such as polyphenols, flavonoids, minerals, and fatty acids. For checking this hypothesis, two extracts were obtained by two different methods using 50% ethyl alcohol solvent, namely through maceration–recirculation (E-SBM) and through ultrasound extraction (E-SBUS), followed by concentration. Next, sea-buckthorn waste (SB sample), extracts (E-SBM and E-SBUS samples) and the residues obtained from the extractions (R-SBM and R-SBUS samples) were characterized for the total polyphenols, flavonoid content, antioxidant capacity, mineral contents, and fatty acids profile. The results show that polyphenols and flavonoids were extracted better by the ultrasound process than the other methods. Additionally, the antioxidant activity of the E-SBUS sample was 91% higher (expressed in Trolox equivalents) and approximately 45% higher (expressed in Fe2+ equivalents) than that of the E-SBM sample. Regarding the extraction of minerals, it was found that both concentrated extracts had almost 25% of the RDI value of K and Mg, and also that the content of Zn, Mn, and Fe is significant. Additionally, it was found that the residues (R-SBM and R-SBUS) contain important quantities of Zn, Cu, Mn, Ca, and Fe. The general conclusion is that using the ultrasound extraction method, followed by a process of concentrating the extract, a superior recovery of sea-buckthorn by-product resulting from the juice extraction can be achieved.
Bioactive compounds and phenolic compounds are viable alternatives to antibiotics in recurrent urinary tract infections. This study aimed to use a natural functional product, based on the bioactive compounds’ composition, to inhibit the uropathogenic strains of Escherichia coli. E. coli ATCC 25922 was used to characterize the IVCM (new in vitro catheterization model). As support for reducing bacterial proliferation, the cytotoxicity against a strain of Candida albicans was also determined (over 75% at 1 mg/mL). The results were correlated with the analysis of the distribution of biologically active compounds (trans-ferulic acid-268.44 ± 0.001 mg/100 g extract and an equal quantity of Trans-p-coumaric acid and rosmarinic acid). A pronounced inhibitory effect against the uropathogenic strain E. coli 317 (4 log copy no./mL after 72 h) was determined. The results showed a targeted response to the product for tested bacterial strains. The importance of research resulted from the easy and fast characterization of the functional product with antimicrobial effect against uropathogenic strains of E. coli. This study demonstrated that the proposed in vitro model was a valuable tool for assessing urinary tract infections with E. coli.
Essential oils were obtained from different parts of Agastache foeniculum (Lophanthus anisatus) plants by means of extraction: green extraction using hydro-distillation (HD) and bio-solvent distillation, BiAD, discontinuous distillation, and supercritical fluid extraction, in two stages: (1) with CO2, and (2) with CO2 and ethanol co-solvent. The extraction yields were determined. The yield values varied for different parts of the plant, as well as the method of extraction. Thus, they had the values of 0.62 ± 0.020 and 0.92 ± 0.015 g/100 g for the samples from the whole aerial plant, 0.75 ± 0.008 and 1.06 ± 0.005 g/100 g for the samples of leaves, and 1.22 ± 0.011 and 1.60 ± 0.049 g/100 g for the samples of flowers for HD and BiAD, respectively. The yield values for supercritical fluid extraction were of 0.94 ± 0.010 and 0.32 ± 0.007 g/100 g for the samples of whole aerial plant, 0.9 ± 0.010 and 1.14 ± 0.008 g/100 g for the samples of leaves, and 1.94 ± 0.030 and 0.57 ± 0.003 g/100 g for the samples of flowers, in the first and second stages, respectively. The main components of Lophanthus anisatus were identified as: estragon, limonene, eugenol, chavicol, benzaldehyde, and pentanol. The essential oil from Agatache foeniculum has antimicrobial effects against Staphylococcus aureus, the Escherichia coli and Pseudomonas aeruginosa. Acclimatization of Lophantus anisatus in Romania gives it special qualities by concentrating components such as: estragole over 93%, limonene over 8%, especially in flowers; and chavicol over 14%, estragole over 30%, eugenol and derivatives (methoxy eugenol, methyl eugenol, etc.) over 30% and phenyl ether alcohol over 20% in leaves. As a result of the research carried out, it was proven that Lophanthus anisatus can be used as a medicinal plant for many diseases, it can be used as a spice and preservative for various foods, etc.
In this study, we present a strategy for valorizing lignocellulosic wastes (licorice root and willow bark) that result from industrial extraction of active principles using water as green solvent and aqueous NaOH solution. The wastes were submitted to severe ultrasound (US) and microwave (MW) treatments. The aim of these treatments was to extract the remaining active principles (using water as a solvent) or to prepare them for cellulose enzymatic hydrolysis to hexoses (performed in an NaOH aqueous solution). The content of glycyrrhizic acid and salicin derivatives in licorice root and willow bark wastes, respectively, were determined. The best results for licorice root were achieved by applying the US treatment for 5 min at 25 °C (26.6 mg glycyrrhizic acid/gDM); while, for willow bark, the best results were achieved by applying the MW treatment for 30 min at 120 °C (19.48 mg salicin/gDM). A degradation study of the targeted compounds was also performed and showed good stability of glycyrrhizic acid and salicin derivatives under US and MW treatments. The soluble lignin concentration prior to enzymatic hydrolysis, as well as the saccharide concentration of the hydrolyzed solution, were determined. As compared with the MW treatment, the US treatment resulted in saccharides concentrations that were 5% and 160% higher for licorice root and willow bark, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.