A bstTactCREME96 is an update of the Cosmic Ray Effects on Micro-Electronics code, a widely-used suite of programs for creating numerical models of the ionizingradiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft. CREME96, which is now available over the World-Wide Web (WWW) at http://crsp3.nrl.navy.mil/creme96/, has many significant features, including (1) improved models of the galactic cosmic ray, anomalous cosmic ray, and solar energetic particle ("flare") components of the near-Earth environment;(2) improved geomagnetic transmission calculations; (3) improved nuclear transport routines; (4) improved singleevent upset (SEU) calculation techniques, for both protoninduced and direct-ionization-induced SEUs; and (5) an easy-to-use graphical interface, with extensive on-line tutorial information. In this paper we document some of these improvements. b ! ~ I I
Abstract. The geophysical significance of the thin nitrate-rich layers that have been found in both Arctic and Antarctic firn and ice cores, dating from the period 1561-1991, is examined in detail. It is shown that variations of meteorological origin dominate the record until the snow has consolidated to high-density firn some 30 years after deposition. The thin nitrate layers have a characteristic short timescale (<6 weeks) and are highly correlated with periods of major solar-terrestrial disturbance, the probability of chance correlation being less than 10 -9. A one-to-one correlation is demonstrated between the
Solar proton events have been routinely detected by satellites since the 20th solar cycle; however, before that time only very major proton events were detected at the Earth. Even though the detection thresholds differed between the 19th and more recent cycles, more than 200 solar proton events with a flux of over 10 particles (cm z s ster)-~ above 10 MeV have been recorded at the Earth in the last three solar cycles. At least 15 50 of these events had protons with energies greater than 450 MeV detected at the Earth. Other than an increase in solar proton event occurrence with increasing solar cycle, no recognizable pattern could be identified between the occurrence of solar proton events and the solar cycle. The knowledge we have gained from the data acquired over the past 40 years illustrates the difficulty in extrapolating back in time to infer the number and intensity of major solar proton events at the Earth.
We characterize and catalog 30 solar eruptive events observed by the Fermi Large Area Telescope (LAT) having late-phase >100 MeV γ-ray emission (LPGRE), identified 30 yr ago in what were called long-duration gamma-ray flares. We show that LPGRE is temporally and spectrally distinct from impulsive phase emission in these events. The spectra are consistent with the decay of pions produced by >300 MeV protons and are not consistent with primary electron bremsstrahlung. Impulsive >100 keV X-ray emission was observed in all 27 LPGRE events where observations were made. All but two of the LPGRE events were accompanied by a fast and broad coronal mass ejection (CME). The LPGRE start times range from CME onset to 2 hr later. Their durations range from ∼0.1 to 20 hr and appear to be correlated with durations of >100 MeV solar energetic particle (SEP) proton events. The power-law spectral indices of the >300 MeV protons producing LPGRE range from ∼2.5 to 6.5 and vary during some events. Combined γ-ray line and LAT measurements indicate that LPGRE proton spectra are steeper above 300 MeV than they are below 300 MeV. The number of LPGRE protons >500 MeV is typically about 10× the number in the impulsive phase of the solar eruptive event and ranges in nine events from ∼0.01× to 0.5× the number in the accompanying SEP event, with large systematic uncertainty. What appears to be late-phase electron bremsstrahlung with energies up to ∼10 MeV was observed in one LPGRE event. We discuss how current models of LPGRE may explain these characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.