In this paper, we present a digital system called (SP/sup 2/INN) for simulating very large-scale spiking neural networks (VLSNNs) comprising, e.g., 1000000 neurons with several million connections in total. SP/sup 2/INN makes it possible to simulate VLSNN with features such as synaptic short term plasticity, long term plasticity as well as configurable connections. For such VLSNN the computation of the connectivity including the synapses is the main challenging task besides computing the neuron model. We describe the configurable neuron model of SP/sup 2/INN, before we focus on the computation of the connectivity. Within SP/sup 2/INN, connectivity parameters are stored in an external memory, while the actual connections are computed online based on defined connectivity rules. The communication between the SP/sup 2/INN processor and the external memory represents a bottle-neck for the system performance. We show this problem is handled efficiently by introducing a tag scheme and a target-oriented addressing method. The SP/sup 2/INN processor is described in a high-level hardware description language. We present its implementation in a 0.35 /spl mu/m CMOS technology, but also discuss advantages and drawbacks of implementing it on a field programmable gate array.
Different algorithms suitable for a specific class of picture were developed for image processing. We will represent the filtering capability of a spiking neural network based on dynamic synapses. For this intention we chose an x-ray image of the human coronary trees and another noisy image. In other words the task at hand is to show how accurately such a network is able to store various aspects (object/background) of stimulus in the variables which describe dynamic of synaptic response. The behavior of these synapses influences the effective connection in the network in a short time-scale. Such a network has a low activity and a balanced behavior. Dynamic synapses are able to adjust their behavior by fast changing stimuli. These synapses retain the information in the variables, such as potential and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.