Computing complex spiking artificial neural networks (SANNs) on conventional hardware platforms is far from reaching real-time requirements. Therefore we propose a neuro-processor, called NeuroPipe-Chip, as part of an accelerator board. In this paper, we introduce two new concepts on chip-level to speed up the computation of SANNs. These concepts are implemented in a prototype of the NeuroPipe-Chip. We present the hardware structure of the prototype and evaluate its performance in a system simulation based on a hardware description language (HDL). For the computation of a simple SANN for image segmentation, the NeuroPipe-Chip operating at 100 MHz shows an improvement of more than two orders of magnitude compared to an Alpha 500 MHz workstation and approaches real-time requirements for the computation of SANNs in the order of 10(6) neurons. Hence, such an accelerator would allow for applications of complex SANNs to solve real-world tasks like real-time image processing. The NeuroPipe-Chip has been fabricated in an Alcatel 0.35-mum digital CMOS technology.
In this paper, we present a digital system called (SP/sup 2/INN) for simulating very large-scale spiking neural networks (VLSNNs) comprising, e.g., 1000000 neurons with several million connections in total. SP/sup 2/INN makes it possible to simulate VLSNN with features such as synaptic short term plasticity, long term plasticity as well as configurable connections. For such VLSNN the computation of the connectivity including the synapses is the main challenging task besides computing the neuron model. We describe the configurable neuron model of SP/sup 2/INN, before we focus on the computation of the connectivity. Within SP/sup 2/INN, connectivity parameters are stored in an external memory, while the actual connections are computed online based on defined connectivity rules. The communication between the SP/sup 2/INN processor and the external memory represents a bottle-neck for the system performance. We show this problem is handled efficiently by introducing a tag scheme and a target-oriented addressing method. The SP/sup 2/INN processor is described in a high-level hardware description language. We present its implementation in a 0.35 /spl mu/m CMOS technology, but also discuss advantages and drawbacks of implementing it on a field programmable gate array.
We present the basic architecture of a emory Optimized Accelerator for pjking eura1 Networks (MASPINN). The accelerator architecture exploits two novel concepts for an efficient computation of spiking neural networks: weight caching and a compressed memory organization. These concepts allow a further parallelization in processing and reduce bandwidth requirements on accelerator's components. Therefore, they pave the way to dedicated digital hardware for real-time computation of more complex networks of pulse-coded neurons in the order of lO6neurons. The programmable neuron model which the accelerator is based on is described extensively. This shall encourage a discussion and suggestions on features which would be desirable to add to the current model.
Different algorithms suitable for a specific class of picture were developed for image processing. We will represent the filtering capability of a spiking neural network based on dynamic synapses. For this intention we chose an x-ray image of the human coronary trees and another noisy image. In other words the task at hand is to show how accurately such a network is able to store various aspects (object/background) of stimulus in the variables which describe dynamic of synaptic response. The behavior of these synapses influences the effective connection in the network in a short time-scale. Such a network has a low activity and a balanced behavior. Dynamic synapses are able to adjust their behavior by fast changing stimuli. These synapses retain the information in the variables, such as potential and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.