SynopsisA new high-pressure facility for diffraction and spectroscopy using diamond anvil highpressure cells has been developed at the Advanced Light Source. Details of the mechanics and performance of the beamline and endstation will be given.
AbstractA new facility for high-pressure diffraction and spectroscopy using diamond anvil highpressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/∆E ~ 7000) and a W/B 4 C multilayers (E/∆E ~ 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure singlecrystal station, applying both monochromatic as well as polychromatic techniques.
2
SynopsisThree near identical protein crystallography beamlines with a single 6 Tesla peak field superconducting dipole bend magnet as the source have been built at the 1.9 GeV Advanced Light Source. The design and performance of this new facility is described.
AbstractAt the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.
A beamline has been constructed at Stanford Synchrotron Radiation Laboratory (SSRL) whose radiation source is a multipole permanent magnet '\.\iggler installed in a straight section of the SPEAR 3-3.5 GeV electron storage ring. The wiggler is a hybrid design that utilizes Nd-Fe alloy magnet material combined with Vanadium Permendur poles. It is approximately 2 m long and has 15 full wiggler periods. Its field is regulated by varying its gap height. It has a peak operating field, limited by the electron beam vacuum chamber vertical aperture, of 1.4 T. The beamline consists ofvacuum, safety, and optical components capable oftransporting photons to one hard xray (3-30 keV) end station, with provisions for implementing up to two additional branch lines. The existing hard x~ray branch can be focused by a Pt-coated toroidal mirror with a cutoff energy of approximately 22 keV. The experimental end station is serviced by a Hower-Brown type double crystal monochromator. The wiggler and beamline construction was completed in the fall of 1987 and was operated for a brief period for characterization and experimental use. We present design details and results of the initial characterization studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.