The aim was to monitor production of eight biogenic amines (BAs) (histamine, tyramine (TYR), tryptamine, putrescine, cadaverine (CAD), phenylethylamine, spermine and spermidine) by selected 81 lactic acid bacteria (LAB) strains: Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Tetragenococcus and Bifidobacterium. The tested LAB and bifidobacteria were isolated from dairy products and beer. The decarboxylase activity of the micro-organisms was studied in growth medium after cultivation. The activity was monitored by HPLC after the pre-column derivatisation with dansylchloride. Fifty LAB showed decarboxylase activity. Thirty-one strains produced low concentrations of CAD (£10 mg L )1 ). Almost 70% of beer isolates generated higher amounts of TYR (£3000 mg L )1 ). Most of the tested LAB demonstrated decarboxylase activity. The above micro-organisms can contribute to the increase of content of BAs in dairy products or beer and thereby threaten food safety and health of consumers. Production of BAs even by the representatives of some probiotic strains (Bifidobacterium and Lactobacillus rhamnosus) was detected in this research. This study has also proved that contaminating LAB can act as sources of higher amounts of CAD and TYR in beer.
Non-Saccharomyces yeasts have aroused interest in brewing science as an innovative and seminal way of creating new beer flavors. A screening system for potential brewing strains of non-Saccharomyces yeasts was set up to investigate the yeast's utilization of wort sugars and to examine the effect of hop acids as well as ethanol on the growth of different yeast strains. Additionally, phenolic off-flavor (POF) and sensory odor tests of fermented wort samples were performed. The promising strains were further investigated for their propagation ability and for following fermentation trials. The produced beers were analyzed for secondary metabolites, ethanol content and judged by trained panelists. Subsequently to the screening, it was discovered that among the 110 screened yeast strains, approx. 10 strains of the species Saccharomycopsis fibuligera, Schizosaccharomyces pombe and Zygosaccharomyces rouxii generate promising fruity flavors during fermentation and were able to metabolize maltose and maltotriose as a prerequisite for the production of alcoholic beers. Consequently, the screening method described in this study makes it possible to investigate a tremendous number of different non-Saccharomyces yeasts and to test their brewing ability in a relatively short period of time.Fermentation 2019, 5, 101 2 of 23 brewer's wort to a desirable beer. Ravasio et al. also evaluated the fermentation and aroma profile of 60 different non-Saccharomyces strains in 2018. The applied yeasts were cultured in a medium based on glucose and the resulting volatile compounds were detected by gas chromatography/mass spectrometry (GC/MS) measurement. Only the promising species were additionally analyzed for their maltose utilization on serial-dilution plate assays [7].The study presented here includes screening the brewing ability of 110 non-Saccharomyces strains with optimized screening conditions as the metabolism of the full range of main wort carbohydrates (glucose, fructose, sucrose, maltose and maltotriose [8]) were taken into account. As maltose and maltotriose represent more than 80% of the total carbohydrates in brewer's wort [9], the ability to ferment these two substances is essential for a fast, complete and predictable fermentation [10]. Melibiose was additionally included into the screening, as a study of Wickerham indicated that bottom-fermenting yeasts are able to metabolize this type of sugar whereas top-fermenting yeasts do not [11]. Furthermore, part of the first screening step looked at the effect of hop iso-α-and β-acids as well as ethanol on the growth of the yeast strains to determine whether there are any existing resistances at certain concentrations that would restrict the production of a conventional beer. As hop acids have antimicrobial properties and β-acids, in particular, were reported to have an even stronger antimicrobial effect than iso-α-acids [12,13], it is necessary to test the yeast's tolerance to these acids. Although a conventional Pils has up to 38 IBU, which is approximately comparable to 38 mg ...
Liquid chromatography-electrospray tandem mass spectrometry (LC/ESI-MS/MS) was used to analyze phospholipids from three species of the anaerobic beer-spoilage bacterial genus Pectinatus. Analysis of total lipids by HILIC (Hydrophilic Interaction Liquid Chromatography) column succeeded in separating diacyl- and plasmalogen phospholipids. Plasmalogens were then analyzed by means of the ESI-MS/MS and more than 220 molecular species of four classes of plasmalogens (PlsCho (choline plasmalogen), PlsEtn (ethanolamine plasmalogen), PlsGro (glycerol plasmalogen), and PlsSer (serine plasmalogen)) were identified. Major molecular species were c-p19:0/15:0 PlsEtn and PlsSer, which accounted for more than 4% of the total lipids.
The net effect of increased wort osmolarity on fermentation time, bottom yeast vitality and sedimentation, beer flavor compounds, and haze was determined in fermentations with 12 degrees all-malt wort supplemented with sorbitol to reach osmolarity equal to 16 degrees and 20 degrees. Three pitchings were performed in 12 degrees/12 degrees/12 degrees, 16 degrees/16 degrees/12 degrees, and 20 degrees/20 degrees/12 degrees worts. Fermentations in 16 degrees and 20 degrees worts decreased yeast vitality measured as acidification power (AP) by a maximum of 10%, lowered yeast proliferation, and increased fermentation time. Repitching aggravated these effects. The 3rd "back to normal" pitching into 12 degrees wort restored the yeast AP and reproductive abilities while the extended fermentation time remained. Yeast sedimentation in 16 degrees and 20 degrees worts was delayed but increased about two times at fermentation end relative to that in 12 degrees wort. Third "back-to-normal" pitching abolished the delay in sedimentation and reduced its extent, which became nearly equal in all variants. Beer brewed at increased osmolarity was characterized by increased levels of diacetyl and pentanedione and lower levels of dimethylsulfide and acetaldehyde. Esters and higher alcohols displayed small variations irrespective of wort osmolarity or repitching. Increased wort osmolarity had no appreciable effect on the haze of green beer and accelerated beer clarification during maturation. In all variants, chill haze increased with repitching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.