Abstract. A parallel version of the self-verified method for solving linear systems was presented in [19,18]. In this research we propose improvements aiming at a better performance. The idea is to implement an algorithm that uses technologies as MPI communication primitives associated to libraries as LAPACK, BLAS and C-XSC, aiming to provide both self-verification and speed-up at the same time. The algorithms should find an enclosure even for ill-conditioned problems. In this scenario, a parallel version of a self-verified solver for dense linear systems appears to be essential in order to solve bigger problems. Moreover, the major goal of this research is to provide a free, fast, reliable and accurate solver for dense linear systems.
Resumo. O presente trabalho aborda a complexidade computacional dos problemas de computar, com entradas intervalares, as medidas de tendência central média, mediana e moda, e as medidas de dispersão amplitude total, variância, desvio padrão, coeficiente de variação, covariância e coeficiente de correlação. Para a investigação da complexidade elabora-se uma abordagem intervalar para os indicadores estatísticos e uma forma de representação dos valores reais em valores intervalares, de tal modo que não ocorram superestimação nos intervalos solução.
IntroduçãoNas pesquisas realizadas sobre o tema complexidade de problemas de estatística descritiva com entradas intervalares, observou-se que não foram encontrados nenhum trabalho que tratasse sobre a complexidade computacional de problemas de medidas de tendência cental intervalar.A literatura ([3], [4], [5]) mostra que foram realizadas pesquisas somente em problemas das medidas de dispersão variância, covariância e coeficiente de correlação com entradas intervalares, e que a utilização da computação intervalar na solução de problemas de medidas de dispersão sempre fornece solução com intervalos superestimados (intervalos com amplitude grande), e que ao procurar uma solução com 1 abl@unisc.br; 2 mac@cin.ufpe.br; 3 dalcidio@inf.pucrs.br; 4 laira@inf.ufrgs.br.
Abstract. Solvers for linear equation systems are commonly used in many different kinds of real applications, which deal with large matrices. Nevertheless, two key problems appear to limit the use of linear system solvers to a more extensive range of real applications: computing power and solution correctness. In a previous work, we proposed a method that employs high performance computing techniques together with verified computing techniques in order to eliminate the problems mentioned above. This paper presents an optimization of a previously proposed parallel self-verified method for solving dense linear systems of equations. Basically, improvements are related to the way communication primitives were employed and to the identification of the points in the algorithm in which mathematical accuracy is needed to achieve reliable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.