This study records and documents the most severe and notable instance ever reported of sudden and widespread dieback of mangrove vegetation. Between late 2015 and early 2016, extensive areas of mangrove tidal wetland vegetation died back along 1000km of the shoreline of Australia’s remote Gulf of Carpentaria. The cause is not fully explained, but the timing was coincident with an extreme weather event; notably one of high temperatures and low precipitation lacking storm winds. The dieback was severe and widespread, affecting more than 7400ha or 6% of mangrove vegetation in the affected area from Roper River estuary in the Northern Territory, east to Karumba in Queensland. At the time, there was an unusually lengthy period of severe drought conditions, unprecedented high temperatures and a temporary drop in sea level. Although consequential moisture stress appears to have contributed to the cause, this occurrence was further coincidental with heat-stressed coral bleaching. This article describes the effect and diagnostic features of this severe dieback event in the Gulf, and considers potential causal factors.
Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large-pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2-3 min per 2-L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species.
Northern Australia is biologically diverse and of national and global conservation signicance. Its ancient landscape contains the world's largest area of savannah ecosystem in good ecological condition and its rivers are largely free-flowing. Agriculture, previously confined largely to open range-land grazing, is set to expand in extent and to focus much more on irrigated cropping and horticulture. Demands on the water resources of the region are thus, inevitably increasing. Reliable information is required to guide and inform development and help plan for a sustainable future for the region which includes healthy rivers that contain diverse fish assemblages. Based on a range of information sources, including the outcomes of recent and extensive new field surveys, this study maps the distribution of the 111 freshwater fishes (excluding elasmobranches) and 42 estuarine vagrants recorded from freshwater habitats of the region. We classify the habitat use and migratory biology of each species. This study provides a comprehensive assessment of the diversity and distribution of fishes of the region within a standardised nomenclatural framework. In addition, we summarise the outcomes of recent phylogeographic and phylogenetic research using molecular technologies to identify where issues of taxonomy may need further scrutiny. The study provides an informed basis for further research on the spatial arrangement of biodiversity and its relationship to environmental factors (e.g. hydrology), conservation planning and phylogentic variation within individual taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.