Crystalline silicon photonic crystal slabs are widely used in various photonics applications. So far, the commercial success of such structures is still limited owing to the lack of cost-effective fabrication processes enabling large nanopatterned areas (≫ 1 cm2). We present a simple method for producing crystalline silicon nanohole arrays of up to 5 × 5 cm2 size with lattice pitches between 600 and 1000 nm on glass and flexible plastic substrates. Exclusively up-scalable, fast fabrication processes are applied such as nanoimprint-lithography and silicon evaporation. The broadband light trapping efficiency of the arrays is among the best values reported for large-area experimental crystalline silicon nanostructures. Further, measured photonic crystal resonance modes are in good accordance with light scattering simulations predicting strong near-field intensity enhancements greater than 500. Hence, the large-area silicon nanohole arrays might become a promising platform for ultrathin solar cells on lightweight substrates, high-sensitive optical biosensors, and nonlinear optics.
We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium based Cs x FA 1-x Pb(I 1-y Br y) 3 perovskite compositions with x = 0-0.3 and y = 0-0.3 under various spin-coating conditions. By varying the Cs and Br content, perovskite precursor solution concentration, and spin-coating procedure, the occurrence and characteristics of the wrinkleshaped morphology can be tailored systematically. Cs 0.17 FA 0.83 Pb(I 0.83 Br 0.17) 3 perovskite layers were analyzed regarding their surface roughness, microscopic structure, local and overall composition, and optoelectronic properties. Application of these films in p-in perovskite solar cells (PSCs) with ITO/NiO x /perovskite/C 60 /BCP/Cu architecture resulted in up to 15.3% and 17.0% power conversion efficiency for the flat and wrinkled morphology, respectively. Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and we are able to directly correlate surface topography with PL peak mapping. This is attributed to differences in local grain size, while there is no indication for compositional de-mixing in the films. We show that perovskite composition, crystallization kinetics, and layer thickness strongly influence the formation of wrinkles which is proposed to be related to the release of compressive strain during perovskite crystallization. Our work helps to better understand film formation and to further improve efficiency of PSCs with widely used mixed perovskite compositions.
Recently, liquid phase crystallization of thin silicon films has emerged as a candidate for thin-film photovoltaics. On 10 μm thin absorbers, wafer-equivalent morphologies and open-circuit voltages were reached, leading to 13.2% record efficiency. However, short-circuit current densities are still limited, mainly due to optical losses at the glass-silicon interface. While nano-structures at this interface have been shown to efficiently reduce reflection, up to now these textures caused a deterioration of electronic silicon material quality. Therefore, optical gains were mitigated due to recombination losses. Here, the SMooth Anti-Reflective Three-dimensional (SMART) texture is introduced to overcome this trade-off. By smoothing nanoimprinted SiOx nano-pillar arrays with spin-coated TiOx layers, light in-coupling into laser-crystallized silicon solar cells is significantly improved as successfully demonstrated in three-dimensional simulations and in experiment. At the same time, electronic silicon material quality is equivalent to that of planar references, allowing to reach V oc values above 630 mV. Furthermore, the short-circuit current density could be increased from 21.0 mA cm−2 for planar reference cells to 24.5 mA cm−2 on SMART textures, a relative increase of 18%. External quantum efficiency measurements yield an increase for wavelengths up to 700 nm compared to a state-of-the-art solar cell with 11.9% efficiency, corresponding to a jsc, EQE gain of 2.8 mA cm−2.
All-inorganic CsPbBr3 perovskite colloidal quantum dots have recently emerged as promising material for a variety of optoelectronic applications, among others for multi-photon-pumped lasing. Nevertheless, high irradiance levels are generally required for such multi-photon processes.One strategy to enhance the multi-photon absorption is taking advantage of high local light intensities using photonic nanostructures. Here, we investigate two-photon-excited photoluminescence of CsPbBr3 perovskite quantum dots on a silicon photonic crystal slab. By systematic excitation of optical resonances using a pulsed near-infrared laser beam, we observe an enhancement of two-photon-pumped photoluminescence by more than one order of magnitude when comparing to using a bulk silicon film. Experimental and numerical analyses allow relating these findings to near-field enhancement effects on the nanostructured silicon surface. The results reveal a promising approach for significant decreasing the required irradiance levels for multiphoton processes being of advantage in applications like low-threshold lasing, biomedical imaging, lighting and solar energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.