Mung bean is a leguminous crop with specific trait in its diet, namely in the form of anti-nutrient components. The sprouting process is commonly done for better nutritional acceptance of mung bean as it presents better nutritional benefits. Sprouted mung bean serves as a cheap source of protein and ascorbic acid, which are dependent on the sprouting process, hence the importance of following the biological process. In larger production scale, there has not been a definite standard for mung bean sprouting, raising the need for quick and effective mung bean sprout quality checks. In this regard, near-infrared spectroscopy (NIRS) has been recognized as a highly sensitive technique for quality control that seems suitable for this study. The aim of this paper was to describe quality parameters (water content, pH, conductivity, and ascorbic acid by titration) during sprouting using conventional analytical methods and advanced NIRS techniques as correlative methods for modelling sprouted mung beans’ quality and ascorbic acid content. Mung beans were sprouted in 6 h intervals up to 120 h and analyzed using conventional methods and a NIR instrument. The results of the standard analytical methods were analyzed with univariate statistics (analysis of variance (ANOVA)), and the NIRS spectral data was assessed with the chemometrics approach (principal component analysis (PCA), discriminant analysis (DA), and partial least squares regression (PLSR)). Water content showed a monotonous increase during the 120 h of sprouting. The change in pH and conductivity did not describe a clear pattern during the sprouting, confirming the complexity of the biological process. Spectral data-based discriminant analysis was able to distinctly classify the bean sprouts with 100% prediction accuracy. A NIRS-based model for ascorbic acid determination was made using standard ascorbic acid to quantify the components in the bean extract. A rapid detection technique within sub-percent level was developed for mung bean ascorbic acid content with R2 above 0.90. The NIR-based prediction offers reliable estimation of mung bean sprout quality
Plums are one of the commercially important stone fruits that are available on the market in both fresh and processed form and the most sought-after products are prunes, cans, jams, and juices. Maturity, harvest, and post-harvest technologies fundamentally determine the relatively short shelf life of plums which is often threatened by Monilinia spp. Causing brown rot worldwide. The aim of the present research was to use advanced analytical techniques, such as hand-held near infrared spectroscopy (NIRS) and electronic tongue (e-tongue) to detect M. fructigena fungal infection on plums and quantify this fungal contamination in raw plum juices. For this purpose, plums were inoculated with fungal mycelia in different ways (control, intact, and through injury) and stored under different conditions (5 °C, and 24 °C) for eight days. The results obtained with the two instruments were analyzed with chemometric methods, such as linear discriminant analysis (LDA) and partial least squares regression (PLSR). The NIRS-based method proved successful when detectability before the appearance of visible signs of the infection was studied. E-tongue was able to detect and quantify the concentration of juice derived from plum developed with M. fructigena with RMSECV lower than 5% w/w. Overall, the two methods proved to be suitable for discriminating between the treatment groups, however, the classification accuracy was higher for samples stored at 24 °C. The research results show both NIRS and e-tongue are beneficial methods to reduce food waste by providing rapid determination of fruit quality.
Recently, bioactive peptides as a health-promoting agent have come to the forefront of health research; however, industrial production is limited, possibly due to the lack of the required technological knowledge. The objective of the investigation was to prepare bioactive peptides with hypoallergenic properties from liquid milk protein concentrate (LMPC), through sequential enzymatic and microbial hydrolysis. LMPC was produced from ultra-heat-treated (UHT) skimmed cow’s milk using a nanofiltration membrane. The effect of the concentration of trypsin (0.008–0.032 g·L−1) on the hydrolysis of LMPC was studied. Subsequently, the hydrolysis of tryptic-hydrolyzed LMPC (LMPC-T) with lactic acid bacteria was performed, and the effect of glucose in microbial hydrolysis was studied. Aquaphotomic analysis of the hydrolysis of LMPC was performed using the spectral range of 1300–1600 nm (near-infrared spectra). Changes in antioxidant capacity, anti-angiotensin-converting enzyme activity, and antibacterial activity against Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes were noted after the sequential tryptic and microbial hydrolysis of LMPC. Allergenicity in LMPC was reduced, due to sequential hydrolysis with 0.016 g·L−1 of trypsin and lacteal acid bacteria. According to the aquaphotomic analysis result, there was a dissociation of hydrogen bonds in compounds during the initial period of fermentation and, subsequently, the formation of compounds with hydrogen bonds. The formation of compounds with a hydrogen bond was more noticeable when microbial hydrolysis was performed with glucose. This may support the belief that the results of the present investigation will be useful to scale up the process in the food and biopharmaceutical industries.
Lablab purpureus (L.) Sweet is a common bean in Asia. High protein content and similar amino acid composition with soybean makes good substitutes against dependency on imported products in Asian countries. One example of a bean product is vegetable milk. Fortification is executed to create a product, which compels our diet. Many people experience low protein and mineral intake from food. Fortification of plant origin products utilizing food waste by-products, namely eggshell waste by-product, may give an opportunity on this field. Milk created using beans is processed immediately. However, physiological process (germination) is capable of increasing its nutrition quality. This research focuses on variation of germination time: 0, 12, 24, 36, and 48 h. Protein digestibility is selected as the main parameter to consider the time. Protein, and mineral content, pH, and total soluble solid content of the milk are analyzed. Germination time of 36 h establishes sprout with digestible protein of 13.36 ± 0.59 g/100 g, milk protein content of 7.21 ± 0.06 g/100 g, pH of 6.74 ± 0.17, and total soluble solid content of 19.0 brix. The addition of eggshell extracted calcium as calcium fortification is 2% w/v, which resulted in mineral content of 276 ± 0.13 mg/100 g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.