The outbreak of COVID-19 in March 2020 led to a shutdown of economic activities in Europe. This included the sports sector since public gatherings were prohibited. The German Bundesliga was among the first sport leagues realizing a restart without spectators. Several recent studies suggest that the home advantage of teams eroded for the remaining matches. Our paper analyses the reaction by bookmakers to the disappearance of such home advantage. We show that bookmakers had problems to adjust the betting odds in accordance with the disappeared home advantage, opening opportunities for profitable betting strategies.
Inventory management optimisation in a multi-period setting with dependent demand periods requires the determination of replenishment order quantities in a dynamic stochastic environment. Retailers are faced with uncertainty in demand and supply for each demand period. In grocery retailing, perishable goods without best-before-dates further amplify the degree of uncertainty due to stochastic spoilage. Assuming a lead time of multiple days, the inventory at the beginning of each demand period is determined jointly by the realisations of these stochastic variables. While existing contributions in the literature focus on the role of single components only, we propose to integrate all of them into a joint framework, explicitly modelling demand, supply shortages, and spoilage using suitable probability distributions learned from historic data. As the resulting optimisation problem is analytically intractable in general, we use a stochastic lookahead policy incorporating Monte Carlo techniques to fully propagate the associated uncertainties in order to derive replenishment order quantities. We develop a general inventory management framework and analyse the benefit of modelling each source of uncertainty with an appropriate probability distribution. Additionally, we conduct a sensitivity analysis with respect to location and dispersion of these distributions. We illustrate the practical feasibility of our framework using a case study on data from a European e-grocery retailer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.