How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of -9.41 ± 0.10 mV. SF-LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF-LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF-bFGF-LIP are still preserved but these are severely compromised for the conventional bFGF-liposome (bFGF-LIP). In vivo experiments reveal that SF-bFGF-LIP accelerates the wound closure of mice with deep second-degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF-bFGF-LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF-LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing.
Hydrogel was not only used as an effective support matrix to prevent intrauterine adhesion after endometrial injury but also served as scaffold to sustain release of some therapeutics, especially growth factor. However, because of the rapid turnover of the endometrial mucus, the poor retention and bad absorption of therapeutic agents in damaged endometrial cavity were two important factors hindering their pharmacologic effect. Herein, a mucoadhesive hydrogel was described by using heparin-modified poloxamer (HP) as the matrix material and ε-polylysine (EPL) as functional excipient. Various EPL-HP hydrogels formulations are screened by rheological evaluation and mucoadhesion studies. It was found that the rheological and mucoadhesive properties of EPL-HP hydrogels were easily controlled by changing the amount of EPL in formulation. The storage modulus of EPL-HP hydrogel with 90 μg/mL of EPL (EPL-HP-90) was elevated to be 1.9 × 10 Pa, in accordance with the adhesion force rising to 3.18 N (10-fold higher than HP hydrogels). Moreover, in vitro release of model drug keratinocyte growth factor (KGF) from EPL-HP hydrogel was significantly accelerated by adding EPL in comparison with HP hydrogel. Both strong mucoadhesive ability and the accelerated drug release behavior for EPL-HP-90 made more of the encapsulated KGF absorbed by the uterus basal layer and endometrial glands after 8 h of administration in uterus cavity. Meanwhile, the morphology of endometrium in the injured uterus was repaired well after 3 d of treatment with KGF-EPL-HP-90 hydrogels. Compared with KGF-HP group, not only proliferation of endometrial epithelial cell and glands but also angiogenesis in the regenerated endometrium was obviously enhanced after treatment with KGF-EPL-HP-90 hydrogels. Alternatively, the cellular apoptosis in the damaged endometrium was significantly inhibited after treatment with KGF-EPL-HP-90 hydrogels. Overall, the mucoadhesive EPL-HP hydrogel with a suitable KGF release profile may be a more promising approach than HP hydrogel alone to repair the injured endometrium.
Proper selection and effective delivery of combination drugs targeting multiple pathophysiological pathways key to spinal cord injury (SCI) hold promise to address the thus far scarce clinical therapeutics for improving recovery after SCI. In this study, we aim to develop a clinically feasible way for targeted delivery of multiple drugs with different physiochemical properties to the SCI site, detail the underlying mechanism of neural recovery, and detect any synergistic effect related to combination therapy.Methods: Liposomes (LIP) modified with a scar-targeted tetrapeptide (cysteine-alanine-glutamine-lysine, CAQK) were first constructed to simultaneously encapsulate docetaxel (DTX) and brain-derived neurotrophic factor (BDNF) and then were further added into a thermosensitive heparin-modified poloxamer hydrogel (HP) with affinity-bound acidic fibroblast growth factor (aFGF-HP) for local administration into the SCI site (CAQK-LIP-GFs/DTX@HP) in a rat model. In vivo fluorescence imaging was used to examine the specificity of CAQK-LIP-GFs/DTX binding to the injured site. Multiple comprehensive evaluations including biotin dextran amine anterograde tracing and magnetic resonance imaging were used to detect any synergistic effects and the underlying mechanisms of CAQK-LIP-GFs/DTX@HP both in vivo (rat SCI model) and in vitro (primary neuron).Results: The multiple drugs were effectively delivered to the injured site. The combined application of GFs and DTX supported neuro-regeneration by improving neuronal survival and plasticity, rendering a more permissive extracellular matrix environment with improved regeneration potential. In addition, our combination therapy promoted axonal regeneration via moderation of microtubule function and mitochondrial transport along the regenerating axon.Conclusion: This novel multifunctional therapeutic strategy with a scar-homing delivery system may offer promising translational prospects for the clinical treatment of SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.