How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of -9.41 ± 0.10 mV. SF-LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF-LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF-bFGF-LIP are still preserved but these are severely compromised for the conventional bFGF-liposome (bFGF-LIP). In vivo experiments reveal that SF-bFGF-LIP accelerates the wound closure of mice with deep second-degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF-bFGF-LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF-LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing.
Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g(-1). The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the theranostic treatment of CNS diseases.
Silk was easily dyed in traditional textile industry because of its strong affinity to many colorants. Herein, the biocompatible silk fibroin was firstly extracted from Bombyx mori silkworm cocoons. And SF nanoparticles (SFNPs) were prepared for dyeing indocyanine green (ICG) and construct a therapeutic nano-platform (ICG-SFNPs) for photo-thermal therapy of glioblastoma. ICG was easily encapsulated into SFNPs with a very high encapsulation efficiency reaching to 97.7 ± 1.1%. ICG-SFNPs exhibited a spherical morphology with a mean particle size of 209.4 ± 1.4 nm and a negative zeta potential of −31.9 mV, exhibiting a good stability in physiological medium. Moreover, ICG-SFNPs showed a slow release profile of ICG in vitro, and only 24.51 ± 2.27% of the encapsulated ICG was released even at 72 h. Meanwhile, ICG-SFNPs exhibited a more stable photo-thermal effect than free ICG after exposure to near-infrared irradiation. The temperature of ICG-SFNPs rapidly increased by 33.9 °C within 10 min and maintained for a longer time. ICG-SFNPs were also easily internalized with C6 tumor cells in vitro, and a strong red fluorescence of ICG was observed in cytoplasm for cellular imaging. In vivo imaging showed that ICG-SFNPs were effectively accumulated inside tumor site of C6 glioma-bearing Xenograft nude mice through vein injection. Moreover, the temperature of tumor site was rapidly rising up to kill tumor cells after local NIR irradiation. After treatment, its growth was completely suppressed with the relative tumor volume of 0.55 ± 033 while free ICG of 33.72 ± 1.90. Overall, ICG-SFNPs may be an effective therapeutic means for intraoperative phototherapy and imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.