Due to the global pandemic (COVID-19) currently facing humanity, a new environment that promotes teaching–learning is now emerging. This environment that challenges traditional teaching practices created an opportunity for the technology industry to capitalize on by developing creative e-learning platforms that empowers the teaching–learning process, during this ‘emergency’ situation. E-learning scenario is an important element to be considered, as it offers a host of benefits, such as reducing costs, allowing for education on-demand, etc., to its adopters. However, the application of this could bring some challenges, as some of the existing online platforms are not conducive to support clear communication among academic staff. This paper describes a report identifying the main problems faced by teachers and students from different countries in Latin America, when using e-learning platforms in a lockdown scenario, reporting the importance to include aspects related with emotions and awareness.
Chronic kidney disease (CKD) refers to the gradual decline of kidney function over months or years. Early detection of CKD is crucial and significantly affects a patient’s decreasing health progression through several methods, including pharmacological intervention in mild cases or hemodialysis and kidney transportation in severe cases. In the recent past, machine learning (ML) and deep learning (DL) models have become important in the medical diagnosis domain due to their high prediction accuracy. The performance of the developed model mainly depends on choosing the appropriate features and suitable algorithms. Accordingly, the paper aims to introduce a novel ensemble DL approach to detect CKD; multiple methods of feature selection were used to select the optimal selected features. Moreover, we study the effect of the optimal features chosen on CKD from the medical side. The proposed ensemble model integrates pretrained DL models with the support vector machine (SVM) as the metalearner model. Extensive experiments were conducted by using 400 patients from the UCI machine learning repository. The results demonstrate the efficiency of the proposed model in CKD prediction compared to other models. The proposed model with selected features using mutual_info_classi obtained the highest performance.
There is an increase in cyberattacks directed at the network behind firewalls. An all-inclusive approach is proposed in this assessment to deal with the problem of identifying new, complicated threats and the appropriate countermeasures. In particular, zero-day attacks and multi-step assaults, which are made up of a number of different phases, some malicious and others benign, illustrate this problem well. In this paper, we propose a highly Boosted Neural Network to detect the multi-stageattack scenario. This paper demonstrated the results of executing various machine learning algorithms and proposed an enormously boosted neural network. The accuracy level achieved in the prediction of multi-stage cyber attacks is 94.09% (Quest Model), 97.29% (Bayesian Network), and 99.09% (Neural Network). The evaluation results of the Multi-Step Cyber-Attack Dataset (MSCAD) show that the proposed Extremely Boosted Neural Network can predict the multi-stage cyber attack with 99.72% accuracy. Such accurate prediction plays a vital role in managing cyber attacks in real-time communication.
Generally, cloud computing is integrated with wireless sensor network to enable the monitoring systems and it improves the quality of service. The sensed patient data are monitored with biosensors without considering the patient datatype and this minimizes the work of hospitals and physicians. Wearable sensor devices and the Internet of Medical Things (IoMT) have changed the health service, resulting in faster monitoring, prediction, diagnosis, and treatment. Nevertheless, there have been difficulties that need to be resolved by the use of AI methods. The primary goal of this study is to introduce an AI-powered, IoMT telemedicine infrastructure for E-healthcare. In this paper, initially the data collection from the patient body is made using the sensed devices and the information are transmitted through the gateway/Wi-Fi and is stored in IoMT cloud repository. The stored information is then acquired, preprocessed to refine the collected data. The features from preprocessed data are extracted by means of high dimensional Linear Discriminant analysis (LDA) and the best optimal features are selected using reconfigured multi-objective cuckoo search algorithm (CSA). The prediction of abnormal/normal data is made by using Hybrid ResNet 18 and GoogleNet classifier (HRGC). The decision is then made whether to send alert to hospitals/healthcare personnel or not. If the expected results are satisfactory, the participant information is saved in the internet for later use. At last, the performance analysis is carried so as to validate the efficiency of proposed mechanism.
Diabetes mellitus is a metabolic syndrome affecting millions of people worldwide. Every year, the rate of occurrence rises drastically. Diabetes-related problems across several vital organs of the body can be fatal if left untreated. Diabetes must be detected early to receive proper treatment, preventing the condition from escalating to severe problems. Tremendous health sciences and biotechnology advancements have resulted in massive data that generated massive Electronic Health Records and clinical information. The exponential increase of electronically gathered information has resulted in more complicated, accurate prediction models that can be updated continuously using machine learning techniques. This research mainly emphasizes discovering the best ensemble model for predicting diabetes. A new multistage ensemble model is proposed for diabetes prediction. In this model, accuracy is predicated on the Pima Indian Diabetes dataset. The accuracy of the proposed ensemble model is compared with the existing machine learning model, and the experimental results demonstrate the performance of the proposed model in terms of higher Precision, f-measure, Recall, and area under the curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.