We demonstrated two important findings; that mobile phones caused oxidative damage biochemically by increasing the levels of MDA, carbonyl groups, XO activity and decreasing CAT activity; and that treatment with the melatonin significantly prevented oxidative damage in the brain.
The aim of the study was to evaluate the effect of melatonin on oxidative stress, DNA fragmentation, apoptsis and proliferation in thymus tissue of rats exposed to microwaves. Wistar rats were divided in four groups: I - treated with saline; II - treated with melatonin; III - microwaves exposed; IV - microwaves exposed and melatonin treated. Melatonin (2 mg/kg i.p.) was administered daily. Animals were sacrificed after 20, 40 and 60 days. A significant increase in malondialdehyde and carbonyl group content, as well as decrease in catalase and increase in xanthine oxidase activity were registered under microwave exposure. Melatonin prevented the increase in malondialdehyde and carbonyl group content, and reversed the effect on catalase and xanthine oxidase activity. Both, alkaline and acid DNase activity were increased due to microwave exposure. Furthermore, microwaves caused increase in apoptosis rate (detected using Annexin V-FITC/PI kit) and reduced proliferative capacity of thymocytes (induced by ConA). However, melatonin caused decrease in alkaline and acid DNase activity, decrease in apoptotic rate and increase in proliferation rate of thymocytes. Melatonin exerts protective effects on rat thymocytes by modulating processes of apoptosis and proliferation, and causes decrease in DNA fragmentation and oxidative stress intensity under exposure to microwaves.
The nature of an electromagnetic fi eld is not the same outside and inside a biological subject. Numerical bioelectromagnetic simulation methods for penetrating electromagnetic fi elds facilitate the calculation of fi eld components in biological entities. Calculating energy absorbed from known sources, such as mobile phones when placed near the head, is a prerequisite for studying the biological infl uence of an electromagnetic fi eld. Such research requires approximate anatomical models which are used to calculate the fi eld components and absorbed energy. In order to explore the biological effects in organs and tissues, it is necessary to establish a relationship between an analogous anatomical model and the real structure. We propose a new approach in exploring biological effects through combining two different techniques: 1) numerical electromagnetic simulation, which is used to calculate the fi eld components in a similar anatomical model and 2) Magnetic Resonance Imaging (MRI), which is used to accurately locate sites with increased absorption. By overlapping images obtained by both methods, we can precisely locate the spots with maximum absorption effects. This way, we can detect the site where the most pronounced biological effects are to be expected. This novel approach successfully overcomes the standard limitations of working with analogous anatomical models. Arh Hig Rada Toksikol 2013;64:159-168
KEY WORDS: accurate locating, computational bioelectromagnetic modelling, electromagnetic fi eld, specifi c absorption rate (SAR)
Krstić et al. PREDICTING BIOLOGICAL EFFECTS OF MOBILE PHONE RADIATION
This paper presents the distributi inside a human head as well as around the el source, i.e. the mobile phone. Specific Abso which is obtained inside a human head and due to exposure to electric field from m presented. For this research two different mo have been used. In the first case electromag biological tissues of human head were volumetric interpolation function tha characteristics of a given tissue inside the hu the second case model with layers was used. T human head parts (skin, fat tissue, muscles brain). The parts of the human head a electromagnetic properties (conductivity, el and magnetic permeability). In order to obta distribution for different cross-sections calculation based on the Finite Integration T Finite Element Method (FEM) was performed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.