The literature on mixed-frequency models is relatively recent and has found applications across economics and finance. The standard application in economics considers the use of (usually) monthly variables (e.g. industrial production) in predicting/fitting quarterly variables (e.g. real GDP). In this paper we propose a Multivariate Singular Spectrum Analysis (MSSA) based method for mixed frequency interpolation and forecasting, which can be used for any mixed frequency combination. The novelty of the proposed approach rests on the grounds of simplicity within the MSSA framework. We present our method using a combination of monthly and quarterly series and apply MSSA decomposition and reconstruction to obtain monthly estimates and forecasts for the quarterly series. Our empirical application shows that the suggested approach works well, as it offers forecasting improvements on a dataset of eleven developed countries over the last 50 years. The implications for mixed frequency modelling and forecasting, and useful extensions of this method, are also discussed. JEL: C18, C53, E17
In this paper I propose a novel optimal linear filter for smoothing, trend and signal extraction for time series with a unit root. The filter is based on the Singular Spectrum Analysis (SSA) methodology, takes the form of a particular moving average and is different from other linear filters that have been used in the existing literature. To best of my knowledge this is the first time that moving average smoothing is given an optimality justification for use with unit root processes. The frequency response function of the filter is examined and a new method for selecting the degree of smoothing is suggested. I also show that the filter can be used for successfully extracting a unit root signal from stationary noise. The proposed methodology can be extended to also deal with two cointegrated series and I show how to estimate the cointegrating coefficient using SSA and how to extract the common stochastic trend component. A simulation study explores some of the characteristics of the filter for signal extraction, trend prediction and cointegration estimation for univariate and bivariate series. The practical usefulness of the method is illustrated using data for the US real GDP and two financial time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.