A general framework for processing high and veryhigh resolution imagery in support of a Global Human Settlement Layer (GHSL) is presented together with a discussion on the results of the first operational test of the production workflow. The test involved the mapping of 24.3 million km² of the Earth surface spread in four continents, corresponding to an estimated population of 1.3 billion people in 2010. The resolution of the input image data ranges from 0.5 to 10 meters, collected by a heterogeneous set of platforms including satellite SPOT (2 and 5), CBERS 2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye 1, QuickBird 2, Ikonos 2, and airborne sensors. Several imaging modes were tested including panchromatic, multispectral and pan-sharpened images. A new fully automatic image information extraction, generalization and mosaic workflow is presented that is based on multiscale textural and morphological image features extraction. New image feature compression and optimization are introduced, together with new learning and classification techniques allowing for the processing of HR/VHR image data using low-resolution thematic layers as reference. A new systematic approach for quality control and validation allowing global spatial and thematic consistency checking is proposed and applied. The quality of the results are discussed by sensor, band, resolution, and eco-regions. Critical points, lessons learned and next steps are highlighted.Index Terms-Built-up density, CSL, global human settlement layer, linear regression, PANTEX, urban limits.
ABSTRACT:The Global Human Settlement Layer (GHSL) is supported by the European Commission, Joint Research Center (JRC) in the frame of his institutional research activities. Scope of GHSL is developing, testing and applying the technologies and analysis methods integrated in the JRC Global Human Settlement analysis platform for applications in support to global disaster risk reduction initiatives (DRR) and regional analysis in the frame of the European Cohesion policy. GHSL analysis platform uses geo-spatial data, primarily remotely sensed and population. GHSL also cooperates with the Group on Earth Observation on SB-04-Global Urban Observation and Information, and various international partners and World Bank and United Nations agencies. Some preliminary results integrating global human settlement information extracted from Landsat data records of the last 40 years and population data are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.