We describe a new approach to logic devices interconnection by the inductive coupling via a ferromagnetic film. The information among the distant devices is transmitted in a wireless manner via a magnetic field produced by spin waves propagating in the ferromagnetic film, referred to as the spin wave bus. As an alternative approach to the transistor-based architecture, logic circuits with spin wave bus do not use charge as an information carrier. A bit of information can be encoded into the phase or the amplitude of the spin wave signal. We present experimental data demonstrating inductive coupling through the 100nm thick NiFe and CoFe films at room temperature. The performance of logic circuits with spin wave bus is illustrated by numerical modeling based on the experimental data. Potentially, logic circuits with spin wave bus may resolve the interconnect problem and provide "wireless" read-in and read-out. Another expected
Different to conventional ferromagnetic resonance methods, we use the phase-shift of spin-wave propagation to investigate spin-wave in conducting ferromagnetic thin films. Spinwave wave vector (or wave number) k, a key parameter in the study of spin-wave dispersion and propagation, is extracted from the ratio of the phase-shift to the propagation distance and the ratio of the intercepts to the slopes of the plot of frequency square (f 2 ) vs. the bias field (H). The wave vectors calculated by both methods are in good agreement. The in-plane anisotropy field H k and saturation magnetization MS can also be extracted from the phase-shift map.
High-resistivity soft magnetic materials are receiving much attention as they have relatively low core loss at high frequencies. We developed magnetically soft granular CoFeHfO material by pulsed-dc reactive magnetron sputtering and compared its electrical and magnetic properties, especially permeability spectra, with those of amorphous CoZrTa material. We also investigated the permeability spectra of patterned CoFeHfO films with different thicknesses and observed their magnetic domain structures by Kerr imaging microscopy. The granular CoFeHfO material has a better high-frequency response than the amorphous CoZrTa at thicknesses beyond ∼0.5μm, if the ratio of the real/imaginary parts of the permeability is the principal figure of merit, and is an excellent candidate for high-frequency applications such as integrated magnetic inductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.