The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.
The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim , an open-source model developed to help address these questions. Covasim includes demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing, hygiene measures, and protective equipment; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine disease dynamics and policy options in Africa, Europe, Oceania, and North America.
Objectives To assess the risks associated with relaxing coronavirus disease 2019 ( COVID ‐19)‐related physical distancing restrictions and lockdown policies during a period of low viral transmission. Design Network‐based viral transmission risks in households, schools, workplaces, and a variety of community spaces and activities were simulated in an agent‐based model, Covasim. Setting The model was calibrated for a baseline scenario reflecting the epidemiological and policy environment in Victoria during March–May 2020, a period of low community viral transmission. Intervention Policy changes for easing COVID ‐19‐related restrictions from May 2020 were simulated in the context of interventions that included testing, contact tracing (including with a smartphone app), and quarantine. Main outcome measure Increase in detected COVID ‐19 cases following relaxation of restrictions. Results Policy changes that facilitate contact of individuals with large numbers of unknown people (eg, opening bars, increased public transport use) were associated with the greatest risk of COVID ‐19 case numbers increasing; changes leading to smaller, structured gatherings with known contacts (eg, small social gatherings, opening schools) were associated with lower risks. In our model, the rise in case numbers following some policy changes was notable only two months after their implementation. Conclusions Removing several COVID ‐19‐related restrictions within a short period of time should be undertaken with care, as the consequences may not be apparent for more than two months. Our findings support continuation of work from home policies (to reduce public transport use) and strategies that mitigate the risk associated with re‐opening of social venues.
Aims: We assessed COVID-19 epidemic risks associated with relaxing a set of physical distancing restrictions in the state of Victoria, Australia - a setting with low community transmission - in line with a national framework that aims to balance sequential policy relaxations with longer-term public health and economic need. Methods: An agent-based model, Covasim, was calibrated to the local COVID-19 epidemiological and policy environment. Contact networks were modelled to capture transmission risks in households, schools and workplaces, and a variety of community spaces (e.g. public transport, parks, bars, cafes/restaurants) and activities (e.g. community or professional sports, large events). Policy changes that could prevent or reduce transmission in specific locations (e.g. opening/closing businesses) were modelled in the context of interventions that included testing, contact tracing (including via a smartphone app), and quarantine. Results: Policy changes leading to the gathering of large, unstructured groups with unknown individuals (e.g. bars opening, increased public transport use) posed the greatest risk, while policy changes leading to smaller, structured gatherings with known individuals (e.g. small social gatherings) posed least risk. In the model, epidemic impact following some policy changes took more than two months to occur. Model outcomes support continuation of working from home policies to reduce public transport use, and risk mitigation strategies in the context of social venues opening, such as >30% population-uptake of a contact-tracing app, physical distancing policies within venues reducing transmissibility by >40%, or patron identification records being kept to enable >60% contact tracing. Conclusions: In a low transmission setting, care should be taken to avoid lifting sequential COVID-19 policy restrictions within short time periods, as it could take more than two months to detect the consequences of any changes. These findings have implications for other settings with low community transmission where governments are beginning to lift restrictions.
Background Sustainable Development Goal (SDG) 2.2 calls for an end to all forms of malnutrition, with 2025 targets of a 40% reduction in stunting (relative to 2012), for wasting to occur in less than 5% of children, and for a 50% reduction in anaemia in women (15–49 years). We assessed the likelihood of countries reaching these targets by scaling up proven interventions and identified priority interventions, based on cost-effectiveness. Methods For 129 countries, the Optima Nutrition model was used to compare 2019–2030 nutrition outcomes between a status quo (maintained intervention coverage) scenario and a scenario where outcome-specific interventions were scaled up to 95% coverage over 5 years. The average cost-effectiveness of each intervention was calculated as it was added to an expanding package of interventions. Results Of the 129 countries modelled, 46 (36%), 66 (51%) and 0 (0%) were on track to achieve the stunting, wasting and anaemia targets respectively. Scaling up 18 nutrition interventions increased the number of countries reaching the SDG 2.2 targets to 50 (39%), 83 (64%) and 7 (5%) respectively. Intermittent preventative treatment of malaria during pregnancy (IPTp), infant and young child feeding education, vitamin A supplementation and lipid-based nutrition supplements for children produced 88% of the total impact on stunting, with average costs per case averted of US$103, US$267, US$556 and US$1795 when interventions were consecutively scaled up, respectively. Vitamin A supplementation and cash transfers produced 100% of the total global impact on prevention of wasting, with average costs per case averted of US$1989 and US$19,427, respectively. IPTp, iron and folic acid supplementation for non-pregnant women, and multiple micronutrient supplementation for pregnant women produced 85% of the total impact on anaemia prevalence, with average costs per case averted of US$9, US$35 and US$47, respectively. Conclusions Prioritising nutrition investment to the most cost-effective interventions within the country context can maximise the impact of funding. A greater focus on complementing nutrition-specific interventions with nutrition-sensitive ones that address the social determinants of health is critical to reach the SDG targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.