Zusammenfassung
Ab 01.01.2020 müssen die Kassenärztlichen Vereinigungen eine telefonische Ersteinschätzung im 24/7-Betrieb anbieten. Ziel ist die Ersteinschätzung der Dringlichkeit akuter Beschwerden und eine Vermittlung an die angemessene Versorgungsstufe. Sehr schwer kranke Patienten müssen unmittelbar der Notfallversorgung, weniger oder nicht dringliche Anliegen alternativen Versorgungsangeboten zugeführt werden. Diese anspruchsvolle Aufgabe werden Fachpersonen übernehmen, die durch geeignete Software unterstützt werden. Im Ausland existieren hierfür Vorbilder. Das Zentralinstitut für die kassenärztliche Versorgung (Zi) überträgt gemeinsam mit der Health Care Quality System GmbH (HCQS) das in Teilen der Schweiz bereits angewendete Swiss Medical Assessment System (SMASS) für eine Anwendung in Deutschland. Das System soll unter dem Namen Strukturierte medizinische Ersteinschätzung in Deutschland (SmED) im Jahr 2019 in den Arztrufzentralen unter der Nummer 116117 eingeführt werden. Auch eine Anwendung für den sogenannten „gemeinsamen Tresen“ von Bereitschaftsdienstpraxen und Krankenhausnotaufnahmen wird entwickelt. Beide Anwendungen werden in dem vom Innovationsfonds geförderten DEMAND-Projekt evaluiert. Die Entwicklung von SmED erfolgt unter Einbeziehung von Vertretern des Marburger Bundes sowie der Deutschen Gesellschaft Interdisziplinäre Notfall- und Akutmedizin (DGINA) und Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI). Eine technische Integration mit der 112 ist in Arbeit.
The extracted factors to describe area-level sociodemographic patterns showed distinct correlations to indicators for medical care use. While SGX was mainly associated with overall morbidity, UX showed consistent relations with specific medical care needs, which may be linked to urban living conditions. Therefore, UX may refer to need for care independently from overall morbidity on the one hand and to structural specifics in health care services on the other hand. The meaning of SGX and UX needs to be further investigated taking additional determining factors into account.
Geographic variation in health care is increasingly subject to analysis and health policy aiming at the suitable allocation of resources and the reduction of unwarranted variation for the patient populations concerned. As in the case of area-level indicators, in most cases populations are geographically defined. The concept of geographically defined populations, however, may be self-limiting with respect to identifying the potential for improvement. As an alternative, we explored how a functional definition of populations would support defining the scope for reducing unwarranted geographical variations. Given that patients in Germany have virtually no limits in accessing physicians of their choice, we adapted a method that has been developed in the United States to create virtual networks of physicians based on commonly treated patients. Using the physician claims data under statutory insurance, which covers 90% of the population, we defined 43,006 populations-and networks-in 2010. We found that there is considerable variation between the population in terms of their risk structure and the share of the primary care practice in the total services provided. Moreover, there are marked differences in the size and structure of networks between cities, densely populated regions, and rural regions. We analyzed the variation for two area-level indicators: the proportion of diabetics with at least one HbA1c test per year for diabetics, and the proportion of patients with low back pain undergoing computed tomography and/or magnetic resonance imaging. Variation at the level of functionally defined populations proved to be larger than for geographically defined populations. The pattern of distribution gives evidence on the degree to which consensus targets could be reached and which networks need to be addressed in order to reduce unwarranted regional variation. The concept of functionally defined populations needs to be further developed before implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.