Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.
The aim of the work is to analyse the mechanical behaviour of anisotropic porous alumina ceramics processed by freeze casting (ice templating). The freeze cast specimens were characterised by a lamellar structure with ellipsoidal pore shape, with a size ranging from 6 to 42 µm and 13 to 300 µm for the minor and major axes, respectively, as a function of the freezing rate and the powder and binder contents. The pore volume fraction ranged from 40 to 57%. SEM analysis of the porous structures after the compression test showed a typical deformation pattern caused by the porosity gradient through the specimen, as determined by X-ray radiography. The apparent elastic modulus of the anisotropic porous alumina ranged from 0.2 to 14 GPa and the compressive strength from 6 to 111 MPa, varying as a function of the process parameters which determine the pore network characteristics. The relationships between stress-strain behaviour in compression and the microstructure and texture were established. An analytical model based on a Gibson and Ashby relationship was used and adapted from SEM microstructural analysis after a mechanical test in order to predict the compressive strength of processed anisotropic alumina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.