It is well recognized that capsaicin increases thermogenesis through enhancement of catecholamine secretion from the adrenal medulla. In the present study of the antiobesity effect of capsaicin, rats (5-week old) received capsaicin (10 mg/kg) along with a high-fat diet (HFD). In comparison with saline-treated rats, body weight of those in the capsaicin-treated group decreased by 8%. We performed differential proteomic analysis using two-dimensional electrophoresis (2-DE) combined with MALDI-TOF mass spectrometry to elucidate the molecular action of capsaicin on the antiobesity effect in epididymal white adipose tissue (WAT). Protein mapping of WAT homogenates using 2-DE revealed significant alterations to a number of proteins: 10 spots were significantly up-regulated and 10 spots were remarkably down-regulated in HFD fed rats treated with capsaicin. Among them, significant down-regulation of heat shock protein 27 (Hsp27) and Steap3 protein, as well as up-regulation of olfactory receptor (Olr1434) in obese WAT was reported for the first time in association with obesity. Most of the identified proteins are associated with lipid metabolism and redox regulation, in which levels of vimentin, peroxiredoxin, and NAD(P)H:quinone oxidoreductase 1 (NQO1) were significantly reduced (>2-fold), whereas aldo-keto reductase, flavoprotein increased with capsaicin treatment. These data demonstrate that thermogenesis and lipid metabolism related proteins were markedly altered upon capsaicin treatment in WAT, suggesting that capsaicin may be a useful phytochemical for attenuation of obesity.
One of the major issues in the field of obesity is why some humans become obese and others resist development of obesity when exposed to high-calorie diets. Despite the same genetic background, namely obesity-prone (OP) and -resistant (OR) rats, differing responses have been demonstrated in a high fat diet-induced rodent model. The aim of the present study was to discover novel obesity-related biomarkers for susceptibility and/or resistance to obesity by proteomic analysis of OP and OR rat plasma. After feeding of high fat diet, OP rats gained approximately 25% more body weight than OR rats and were used for proteomic analysis using 2-DE combined with MALDI-TOF-MS. We categorized identified proteins into three groups by analysis of both average spot density in each group and individual spot density of six rats as a function of body weight. Consequently, category (1) included inter-α-inhibitor H4 heavy chain and fetuin B precursor, which can be used as novel plasma biomarkers for risk of obesity. Nine proteins of category (2) and (3) can also be plausible plasma markers in the study of obesity. This proteomic study is an important advancement over the previous steps needed for identification of OP and OR rats.
In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague-Dawley rats fed with a high-fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8 wk. After HFD feeding, capsaicin-treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2-DE for detection of HFD-associated markers. Proteomic analysis using 2-DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD-fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP-activated protein kinase (AMPIC) CP3 and acetyl-CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK-ACC-malonyl-CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet-induced alterations of protein expression that are essential for energy expenditure in rat muscle.
One of the major questions in the field of obesity is why some humans become obese (obesity prone, OP) and others resist the development of obesity (obesity resistant, OR) when exposed to a high-calorie diet, which has not been completely studied. Therefore, in the present study, in order to gain insight into the molecular mechanisms underlying this propensity, we have performed a comparative analysis of protein expression profiles in white adipose tissue (WAT) and brown adipose tissue (BAT) of rats fed a high-fat diet by 2-DE and MALDI-TOF-MS. Protein mapping of homogenates revealed significant alterations to a number of proteins; 60 and 70 proteins were differentially regulated in BAT and WAT, respectively. For careful interpretation of proteomic results, we categorized the identified proteins into two groups by analysis of both average spot density of pooled six rat adipose tissues and individual spot density of each adipose tissue of six rats as a function of body weight. One of the most striking findings of this study was that significant changes of Ehd1 and laminin receptor in BAT as well as antiquitin, DJ-1 protein, and paraoxonase 2 in WAT were found for the first time in obese rats. In addition, we confirmed the increased expression of some thermogenic enzymes and decreased lipogenic enzymes in adipose tissues of OR rats by immunoblot analysis. To our knowledge, this is the first proteomic study of profiling of protein modulation in OP and OR rats, thereby providing the first global evidence for different propensities to obesity between OP and OR rats.
A primary goal in obesity research is to determine why some people become obese (obesity-prone, OP) and others do not (obesity-resistant, OR) when exposed to high-calorie diets. The metabolic changes that cause reduced adiposity and resistance to obesity development have yet to be determined. We thus performed proteomic analysis on muscular proteins from OP and OR rats in order to determine whether other novel molecules are involved in this response. To this end, rats were fed a low- or high-fat diet for 8 weeks and were then classified into OP and OR rats by body weight gain. OP rats gained about 25% more body weight than OR rats, even though food intake did not differ significantly between the two groups. Proteomic analysis using 2-DE demonstrated differential expression of 26 spots from a total of 658 matched spots, of which 23 spots were identified as skeletal muscle proteins altered between OP and OR rats by peptide mass fingerprinting. Muscle proteome data enabled us to draw the conclusion that enhanced regulation of proteins involved in lipid metabolism and muscle contraction, as well as increased expression of marker proteins for oxidative muscle type (type I), contributed to obesity-resistance; however, antioxidative proteins did not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.