/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. Science and Plant Analysis, 29, 1-2, pp. 15-21, 1998-01-01 Direct measurement of organic carbon content in soils by the Leco CR-12 carbon analyzer Wang, D. L.; Anderson, D. W.
Communications in Soil
/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10. 1016/j.jhydrol.2010.10.037 Journal of Hydrology, 396, 1-2, pp. 94-103, 2011-01-01 Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands Zhang, H.; Huang, G. H.; Wang, D. L.; Zhang, X.U nc e rt a int y a sse ssm e nt of c lim a t e c ha nge im pa c t s on t he hydrology of sm a ll pra irie w e t la nds
NRCC-54504Zhang, H.; Huang, G.
/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10.1016/j.ibiod.2011.05.004International Biodeterioration & Biodegradation, 65, 6, pp. 810-817, 2011-11-01 Biodeterioration of asbestos cement (AC) pipe in drinking water distribution systems Wang, D. L.; Cullimore, R.; Hu, Y.; Chowdhury, R. form on the inside surface of AC pipes as a distinctively continuous coating, commonly 2 to 5 mm in thickness and generally pigmented as yellow, orange, brown or black depending on the metallic cations that have been incorporated into the surface of biofilm (bioaccumulation). Four sublayers can be identified in the patina, from the outer sublayer that directly interacts with the conveyed drinking water to the inner sublayer that is in proximity of the intact cement matrix. The microbes in the outer sublayer are composed mainly of inactive biomass that separates the aerobic environment of the flowing water from the anaerobic conditions inside the patina. The bacteriological community structure shifts from mixed heterotrophic (HAB), iron related (IRB) and slime forming bacteria (SLYM) in the outer layer, to a more diverse community with IRB, acid producing (APB) and SLYM and HAB in the middle sublayer, and further to the SLYM dominated in the inner sublayer. By directly interacting with cementitious materials, including generating organic acids, IRB and APB play important roles in the leaching of free lime and the dissolution of calcium (Ca)-bearing hydrated components of AC pipes, creating porous structure and reducing the pipe strength. Scanning electron microscopy with an energy dispersive X-ray has revealed that bacterial activity on the internal AC pipe wall had resulted in a significant loss of hydrated cement matrix, which can cause pipe failure when stresses imposed on the pipe exceed the remaining pipe strength.
Biodeterioration of asbestos cement (AC) pipe in drinking water distribution systems2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.