To clarify the epidemiological relationship between cattle and human infections of Shiga toxin-producing Escherichia coli (STEC), we studied the duration and magnitude of the excretion of STEC O157 and STEC O26 with rectal faeces from naturally infected cattle at a breeding farm in the Tohoku area of Japan, using microbiological methods. The prevalence of STEC O157 was 3.5% (11/324), whereas that of STEC O26 was 7.9% (14/178). Faecal shedding of STEC O157 persisted for < 1 week to 10 weeks, whereas STEC O26 persisted from < 1 week to < 3 weeks. The magnitude of faecal shedding (per 10 g) ranged from 4 to > 110,000 c.f.u. for STEC O157 and from 3 to 2400 c.f.u. for STEC O26. All isolates of both STEC serotypes contained the stx1 or stx2 genes. Pulsed-field electrophoretic analysis of both STEC serotypes identified predominantly STEC O157 type III and STEC O26 type I in isolates, suggesting that a single STEC strain may be mutated in the intestinal tract of calves. These results indicate that STEC O157 is secreted for longer periods and in higher numbers than STEC O26 from healthy calves with natural infections, suggesting that STEC O157 may have more opportunities than STEC O26 to induce human disease.
Background and Aim:The feasibility assessment of food products on the market becomes one of the milestones of food safety. The quality of food safety of animal origin especially pork need to get attention and more real action from the parties related and concerned. Since pork is also a source of transmission for the contagion of foodborne disease so that the study of the existence of several agents in the pork and its products become the benchmark of safety level. This study aimed to isolate, identify, and detect the Shiga toxin 2a (stx2a) gene from Escherichia coli O157:H7 in pork, pig feces, and clean water in the Jagalan slaughterhouse.Materials and Methods:A total of 70 samples consisting of 32 pork samples, 32 pig fecal samples, and 6 clean water samples were used to isolate and identify E. coli O157:H7 and the stx2a gene. Isolation and identification of E. coli O157:H7 were performed using culture on eosin methylene blue agar and Sorbitol-MacConkey agar media and confirmed molecularly with polymerase chain reaction to amplify the target genes rfbE (317 bp) and fliC (381 bp). The isolates, which were identified as E. coli O157:H7, were investigated for the stx2a gene (553 bp).Results:The results of this study show that of the total collected samples, E. coli O157:H7 was 28.6% in Jagalan slaughterhouse and consisted of 25% of pork samples, 31.25% of pig fecal samples, and 33.3% of clean water samples. The isolates that were identified to be E. coli O157:H7 mostly contained the stx2a gene, which was equal to 75%, and consisted of seven isolates from pork samples, seven isolates from fecal samples, and one isolate from clean water samples.Conclusion:E. coli O157:H7 was found in 28.6% of pork, pig feces, and clean water in Jagalan slaughterhouse and 75% of identified E. coli O157:H7 contained the stx2a gene.
Extended Spectrum Beta Lactamase (ESBL)-producing Escherichia coli (E. coli) infections are a global health challenge resulting from human contact with infected animals and contaminated farm environments. This study aims to identify antimicrobial resistance patterns of ESBL-producing E. coli isolated from dairy farms in the Sleman District of Yogyakarta Province, Indonesia. Ninety-three dairy farms with a history of antibiotic use in the previous 6 months were identified. Samples were collected from 6 different sources (feces, milk, wastewater, animal drinking water, feed and rinses of workers’ hands) on each farm during August through November 2020. These samples were cultured with conventional microbiological methods for the isolation of ESBL-producing E. coli. ESBL-producing E. coli was identified in one or more of the sources in 54% (50/93) of the dairy farms sampled. Fecal samples were the most commonly positive (25%) while wastewater, animal drinking water feed, milk and hand rinses were positive at 16%, 10%, 5%, 4% and 3% respectively. Colonies from each positive sample were screened for antibiotic susceptibility test using the Vitek-2 system. Resistance to trimethoprim/sulfamethoxazole, tetracycline and gentamicin were found in 74%, 63% and 48% of the isolates, respectively. Multidrug resistant (MDR) was identified in 50% (63/127) of the isolates. In conclusion, ESBL-producing E. coli appears widespread in dairy farms using antibiotics and antimicrobial resistance among these bacteria is common in this study area. Further study of the risk of human transmission from contaminated cattle and their environments could benefit the national antimicrobial resistance strategic plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.