In the present paper are presented the experimental results of biomass gasification, the biochair was produced from vineyards by controlled pyrolysis at 750 �C, in order to increase the fertility of soils, it was found the increase of the fertility produced by the development of the vegetables in the soil to which was added biochar. Soil was added to soil 4 g/dm3 biochar, 8 g/dm3 biochar, the soil had no high humidity, was taken at a time when it had not rained for at least one week, the soil pH was 8, in the soil with 8 g/dm3 biochar the plants increased compared to the soil with 4 g/dm3 and the soil without biochar. The biochar resulting from pyrolysis and gasification processes is a valuable amendment to agricultural soils and an efficient and economical way to seize carbon. Using biochar it is possible to increase the diversity of agricultural land in an environmentally sound way in areas with depleted soils, limited organic resources and insufficient water for development. Helps to soil carbon sequestration with negative CO2 balance, increases the productive potential of agricultural ecosystems.
Abstract:The paper presents a study on increasing energy independence of a 200 m 2 horticultural hothouse, by means of heating it with thermal energy from a TLUD (top-lit-up-draft) gasification procedure of local residual agricultural biomass, chopped at 10-50 mm and dried at 10%-15% RH (relative humidity). It produces an average of 14% higt quality biochar. Hot-air heating system and forced circulation are equipped with two GAZMER 40/150G energetic modules, which are rechargeable, simple, safe, efficient and environmentally friendly. They can gasify chopped or pelletised biomass. To study the microclimate evolution, it was used a complex numerical model for a 200 m 2 hothouse for growing vegetables. Simulated experiments were carried out for frosty days and, estimated, for the whole warming period. Each year 13.44 t of biomass are consumed, resulting 1.78 t of biochar which, when introduced in soil, produces a -6.2 t/year negative balance of CO 2 .
At present, the focus is on distributed energy generation with low or negative carbon emissions as well as high conversion yields. In Romania, the renewable energy resource that can be used and produced when and wherever necessary is residual agricultural biomass with a potential of 31 million tons, which can produce over 40% of the national energy demand. Residual agricultural biomass is produced with an average energy efficiency of 6 kWh·bm/kWh input. The CHAB (combined heat and biochar production) concept produces high yield thermal energy as well as BC (biochar) with an average carbon footprint of 140 kg/ton biomass. If the energy produced is used to produce agricultural output, the negative carbon footprint increases by reducing the consumption of fossil fuels. It increases energy independence, the safety of agricultural production, the number of jobs, and regional economic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.