We study the enhancement of the ferromagnetic relaxation rate in thin films due to the adjacent normal metal layers. Using linear response theory, we derive the dissipative torque produced by the s − d exchange interaction at the ferromagnet-normal metal interface. For a slow precession, the enhancement of Gilbert damping constant is proportional to the square of the s−d exchange constant times the zero-frequency limit of the frequency derivative of the local dynamic spin susceptibility of the normal metal at the interface. Electron-electron interactions increase the relaxation rate by the Stoner factor squared. We attribute the large anisotropic enhancements of the relaxation rate observed recently in multilayers containing palladium to this mechanism. For free electrons, the present theory compares favorably with recent spin-pumping result of Tserkovnyak et al. [Phys. Rev. Lett. 88,117601 (2002)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.