In this report we propose a new approach to classification of serine proteases of the chymotrypsin family. Comparative structure-function analysis has revealed two main groups of proteases: a group of trypsin-like enzymes and graspases (granule-associated proteases). The most important structural peculiarity of graspases is the absence of conservative "active site" disulfide bond Cys191-Cys220. The residue at position 226 in the S1-subsite of graspases is responsible for substrate specificity, whereas the residue crucial for specificity in classical serine proteases is located at position 189. We distinguish three types of graspases on the base of their substrate specificity: 1) chymozymes prefer uncharged substrates and contain an uncharged residue at position 226; 2) duozymes possess dual trypsin-like and chymotrypsin-like specificity and contain Asp or Glu at 226; 3) aspartases hydrolyze Asp-containing substrates and contain Arg residue at 226. The correctness of the proposed classification was confirmed by phylogenic analysis.
Here we report bisphenol derivatives of fluorene (BDFs) as a new type of chemical probes targeting a histone-like HU protein, a global regulator of bacterial nucleoids, via its dimerization interface perturbation. BDFs were identified by virtual screening and molecular docking that targeted the core of DNA-binding β-saddle-like domain of the HU protein from Spiroplasma melliferum. However, NMR spectroscopy, complemented with molecular dynamics and site-directed mutagenesis, indicated that the actual site of the inhibitors’ intervention consists of residues from the α-helical domain of one monomer and the side portion of the DNA-binding domain of another monomer. BDFs inhibited DNA-binding properties of HU proteins from mycoplasmas S. melliferum, Mycoplasma gallicepticum and Escherichia coli with half-maximum inhibitory concentrations in the range between 5 and 10 µM. In addition, BDFs demonstrated antimicrobial activity against mycoplasma species, but not against E. coli, which is consistent with the compensatory role of other nucleoid-associated proteins in the higher bacteria. Further evaluation of antimicrobial effects of BDFs against various bacteria and viruses will reveal their pharmacological potential, and the allosteric inhibition mode reported here, which avoids direct competition for the binding site with DNA, should be considered in the development of small molecule inhibitors of nucleoid-associated proteins as well as other types of DNA-binding multimeric proteins.
Mammalian serine proteases such as the chromosome 14 (Homo sapiens, Mus musculus) located granzymes, chymases, cathepsin G, and related enzymes including duodenase collectively represent a special group within the chymotrypsin family which we refer to here as "granases". Enzymes of this group have lost the ancient active-site disulfide bond Cys191-Cys220 (bovine chymotrypsinogen A numbering) which is strongly conserved in classic serine proteases such as pancreatic, blood coagulation, and fibrinolysis proteases and others (granzymes A, M, K and leukocyte elastases). We sequenced the cDNA encoding bovine (Bos taurus) duodenase, a granase with unusual dual trypsin-like and chymotrypsin-like specificity. The sequence revealed a 17-residue signal peptide and two-residue (GlyLys) activation peptide typical for granases. Production of the mature enzyme is apparently accompanied by further proteolytic processing of the C-terminal pentapeptide extension of duodenase. Similar C-terminal processing is known for another dual-specific granase, human cathepsin G. Using phylogenetic analysis based on 39 granases we retraced the evolution of residues 189 and 226 crucial for serine protease primary specificity. The analysis revealed that while there is no obvious link between mutability of residue 189 and the appearance of novel catalytic properties in granases, the mutability of residue 226 evidently gives rise to different specificity subgroups within this enzyme group. The architecture of the extended substrate-binding site of granases and structural basis of duodenase dual specificity based on molecular dynamic method are discussed. We conclude that the marked selectivity of granases that is crucial to their role as regulatory proteases has evolved through the fine-tuning of specificity at three levels--primary, secondary, and conformational.
The article presents the results of antimicrobial resistance monitoring of Salmonella isolated from children and adults with diarrhea in St. Petersburg in 2014-2018. In 746 isolates of 42 serovars more than 90,0% belonged to three: S. enteritidis (79,6%), S. typhimurium (6,8%) and S. infantis (3,8%). The antimicrobial susceptibility testing (according the EUCAST) to 7 classes of antimicrobials revealed the resistance in 78,6% of Salmonella. Low-level quinolone resistance (MIC of ciprofloxacin 0,12-0,5 mg/l) was detected in 63,3% isolates (S. enteritidis -71,0%, S. typhimurium - 15,7%, S. infantis - 89,3%) and was due to five kinds of single nucleotide substitutions in gyrA: Asp87Tyr - 36,1% of studied isolates (only S. infantis); Ser83Phe - 22,2% (only S. enteritidis); Asp87Asn - 19,4% (S. enteritidis, S. typhimurium, S. hadar, S. newport); Ser83Tyr -11,1% (S. enteritidis and S. infantis) and Asp87Gly - 8,3% (only S. enteritidis). Only in one S. kentucky isolate with high-level fluoroquinolone resistance (MIC of ciprofloxacin > 8,0 mg/l) two substitutions (Ser83Phe and Asp87Asn) were detected. Two Salmonella isolates (S. typhimurium and S. corvallis) had plasmid-mediated quinolone resistance (qnrS). Extended-spectrum cephalosporin resistance was found in 6 Salmonella serovars (1,6%). The bla-genes were detected: of genetic group CTX-M1 - in 10 isolates (serovars S. typhimurium, S. enteritidis, S. abony, S. coeln and S. virchow), CTX-M2 - in 2 S. typhimurium isolates, CTX-M9 - in three S. enteritidis isolates. In one S. typhimurium CTX-M1 and CTX-M2 were detected. The gene of CMY-2 (molecular class C cephalosporinase) was revealed in two isolates (S. newport and S. enteritidis). Our study showed that Salmonella (the main bacterial pathogen of acute diarrhea in children and adults) isolated in Saint-Petersburg had antimicrobial resistance to drugs of choice for salmonellosis treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.