Sweetpotato, with a global annual planting area of approximately 9 million ha, is the second most important tropical root crop. It is widely adapted, being grown in more than 110 countries. Early maturing varieties grow in 3-4 months. It is hardy and has multiple uses. Both roots and foliage are edible and provide energy and nutrients in diets. Distinct quality types have different uses, with orange-fleshed sweetpotato being valued for its extremely high provitamin A content, and other types used in varied fresh and processed forms. Sweetpotato is easily bred, as true seed is easily obtained and generation cycles are short. There are five objectives of this review. The first objective is to briefly describe recent production and utilization trends by region; the second is to review knowledge about the origin and genetic nature of sweetpotato; the third is to review selected breeding objectives. The fourth objective is to review advances in understanding of breeding methods, including: (i) generation of seed through polycross nurseries and controlled cross breeding; (ii) a description of a new accelerated breeding approach; (iii) recent efforts to systematically exploit heterosis; and (iv) new approaches of genomic selection. The fifth objective is to provide information about variety releases during the past 20 years in West, East and Southern Africa, South Asia, East and South-east Asia, China and the Pacific.
Sweet potato (Ipomoea batatas L.) is mostly grown in Asia, which accounts for 86% of global production. However, its production is under threat by salinity. Little is known about genotypic responses to salinity in sweet potato. Phenotypic responses or physiological processes linked to salt tolerance that could be developed into a reliable screening tool to assist breeding have not yet been developed for sweet potato. In a hydroponic cultivation system, 12 contrasting sweet potato genotypes were subjected to 0, 50, 100 and 150 mM root zone salinity (RZS). Genotypic thresholds for dry matter accumulation and the genotypic slopes for additional dry matter reduction when the RZS increased beyond the genotypic threshold were determined. Sodium, chlorine and potassium (K) were determined from above‐ground biomass and correlated with the genotypic thresholds found. Genotypic threshold levels were linearly negatively correlated with the difference in tissue K content at 75 mM RZS and the tissue K content at control levels. Based on the genotypic ability to retain high tissue potassium levels under increasing RZS, we propose a screening tool based on these experimental data that can distinguish between salt‐tolerant and salt‐sensitive genotypes and indicate the potential yield level of the sweet potato genotypes.
Genetic variation and relationship among 28 mango germplasm were analyzed using Random Amplified Polymorphic DNA (RAPD). Out of 20 primers screened, four were selected, which gave 50 clear and bright fragments, out of which 48 fragments were considered polymorphic. The proportion of polymorphic loci and gene diversity values across all loci were 96% and 0.29, respectively. The UPGMA dendrogram based on genetic distance segregated the 28 mango germplasm into two main clusters. Sukul alone formed one cluster and the rest germplasm were grouped together into another cluster. Mallika and Amrapali cultivar pair was very close to each other with the highest intervarietal similarity index (87.30%) and lowest genetic distance (0.08). On the other hand, Sukul and Meghnath pair was more distant to each other with the lowest intervarietal similarity index (14.29%) and highest genetic distance (0.87). The results of the present study indicated that the RAPD analysis could be utilized by breeders for further improvement of mango varieties.
Orange fleshed sweet potatoes (OFSP) are desirable for high productivity and profitability and their distribution to improve the nutrition of river bank inhabitants of Gaibandha and Rangpur districts of Bangladesh. In this context, a field trial was conducted in two riverbank-based farmers’ fields such as Saghata, Gaibandha, and Pirganj, Rangpur, particularly in the Active Tista Floodplain Agro-ecological Zone of Bangladesh. Four OFSP varieties were evaluated, i.e., G1: BARI SP-8; G2: BARI SP-12; G3: BARI SP-14; G4: BARI SP-15, along with one local cultivar as a control (Red skin with white flesh). Significant variations among the sweet potato genotypes were noted for a number of tuberous roots plant−1, length of root diameter of roots, tuberous root weight plant−1, root yield (fresh), root yield (dry), beta-carotene yield, as well as energy output. Over the locations, BARI SP-12 produced about 73% higher root yield (32.00 t ha−1) and it was like the BARI SP-8 (31.07 t ha−1), which produced about 68% higher yield in comparison with local cultivar (18.51 t ha−1). Across the location, BARI SP-8 performed better in root yield (31.89 t ha−1) in Gaibandha, 69% superior to local cultivar, whereas BARI SP-12 performed better in Rangpur (33.66 t ha−1), which was 86% greater than the local sweet potato cultivar. Considering the root dry yield production, BARI SP-8 produced the highest in the Gaibandha location after that Rangpur location. Further, BARI SP-14 had wider adaptability and stability over the year and location depended on the AMMI model. The beta carotene yield (Vitamin-A precursor) ranged 336–2957 kg ha−1 among the OFSP varieties, whereas the highest (2957 kg ha−1) carotene was recorded in BARI SP-14, similar to BARI SP-15 (2952 kg ha−1) but was much lower in BARI SP-8 and BARI SP-12. Moreover, BARI SP-8 and BARI SP-12 were also economically profitable in terms of gross margin (3233 and 3364 US$ ha−1, respectively), net return (3039 and 3170 US$ ha−1, respectively) and BCR (3.21 and 3.31, respectively, vs. 1.91) due to higher returns with a similar production cost of the local cultivar. The results suggested that BARI SP-8 is economically profitable in the riverbank areas of Gaibandha, and BARI SP-12 is suitable for the riverbank areas of Rangpur.
International Potato Center (CIP), -bred potato genotypes produce various yields under heat stress conditions due to being sown late. To explore options for achieving this, a replicated experiment was conducted at the field of Tuber Crops Research Sub-Centre, Bangladesh Agricultural Research Institute, Bogura, Bangladesh to evaluate the performance of fourteen CIP-bred potato genotypes with two controls (Asterix and Granola). The experiment was laid out in a split-plot design with three replications. Several indices were applied to find out the suitable genotypes under heat stress. The plant height increased by 34.61% under heat stress, which was common in all the potato genotypes. Similarly, other yield-participating characters like stem per hill, canopy coverage (%), plant vigor, and tuber number per plant were also increased under heat stress conditions. However, the tuber yield was decreased by 6.30% and 11.41%, respectively when harvested at 70 and 90 days after plantation. Moreover, “CIP-203” yielded the highest (40.66 t ha-1) in non-stressed whereas, “CIP-118” yielded the highest (32.89 t/ha) in stressed conditions. Likewise, the bred “CIP-218” and “CIP-118” performed better under both growing conditions and yielded >35.00 t ha-1. According to a rank-sum test, among the fourteen potato genotypes, “CIP-218”, “LB-7”, “CIP-118”, “CIP-232”, and “CIP-112” were selected as heat-tolerant potatoes and can grow in both growing conditions with higher yield potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.