The (Ca2(+)-Mg2(+)-ATPase purified from skeletal muscle sarcoplasmic reticulum binds two Ca2+ ions per ATPase molecule. On reconstitution into bilayers of dioleoylphosphatidylcholine [C18:1)PC) or dinervonylphosphatidylcholine [C24:1)PC) the stoichiometry of binding remains unchanged, but when the ATPase is reconstituted into bilayers of dimyristoleoylphosphatidylcholine [C14:1)PC) the stoichiometry changes to one Ca2+ ion per ATPase molecule. Nevertheless, the level of phosphorylation is the same for the ATPase reconstituted with (C18:1)PC or (C14:1)PC. The effect of (C14:1)PC on the stoichiometry of Ca2+ binding is prevented by androstenol at a 1:1 molar ratio with the phospholipid.
The ATPase activity for the (Ca2(+)-Mg2+)-ATPase purified from rabbit skeletal muscle sarcoplasmic reticulum is lower when reconstituted into bilayers of dimyristoleoylphosphatidylcholine [(C14:1)PC] than when it is reconstituted into dioleoylphosphatidylcholine [(C18:1)PC]. The rate of formation of phosphoenzyme on addition of ATP is slower for (C14:1)PC-ATPase than for the native ATPase or (C18:1)PC-ATPase. The reduction in rate of phosphoenzyme formation is attributed to a reduction in the rate of a conformational change on the ATPase following binding of ATP but before phosphorylation. The level of phosphoenzyme formed from Pi is also less for (C14:1)PC-ATPase than for (C18:1)PC-ATPase. At steady state at pH 6.0 in the presence of ATP Ca2+ is released from (C18:1)PC-ATPase into the medium, but not from (C14:1)PC-ATPase. These effects of (C14:1)PC on the ATPase are reversed by addition of androstenol to a 1:1 molar ratio with (C14:1)PC. The results are interpreted in terms of a kinetic model for the ATPase.
We have studied the effect of temperature on transcription initiation in vitro at two related promoters ga/Pcon and gaIP1, which have the same nucleotide sequence around the -10 region and transcription start site, but differ in upstream sequences. One of the promoters, gaIPcon, carries the consensus -35 hexamer, 5'TTGACA 3', whilst gaIP1 contains a block of 'distortable' upstream sequences that allow promoter function in the absence of a -35 region consensus sequence. RNA polymerase can form complexes with both promoters at a range of temperatures. However, the thermal energy requirement for open complex formation differs: open complexes can form at gaIP1 at low temperatures, whereas gaIPcon requires higher temperatures. The thermal energy requirement for transcription from preformed open complexes is the same for both promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.