In order to address the challenge of increasing data rates, next generation optical communication networks will require the co-integration of electronics and photonics. Heterogeneous integration of these technologies has shown promise, but will eventually become bandwidth limited. Faster monolithic approaches will, therefore, be needed, but monolithic approaches using complementary metal-oxide-semiconductor (CMOS) electronics and silicon photonics are typically limited by their underlying electronic or photonic technologies. Here, we report a monolithically integrated electro-optical transmitter that can achieve symbol rates beyond 100 GBd. Our approach combines advanced bipolar CMOS with silicon plasmonics, and addresses key challenges in monolithic integration through the co-design of the electronic and plasmonic layers, including thermal design, packaging, and a nonlinear organic electro-optic material. To illustrate the potential of our technology, we develop two modulator conceptsan ultra-compact plasmonic modulator and, alternatively, a silicon-plasmonic modulator with photonic routing -both directly processed onto the bipolar CMOS electronics.
Nature's ability to form stable and controllable host‐guest systems is exploited to construct a new type of robust matrix biomaterial, which is used for the formation of protein luminescent films and devices. This simple methodology involves the extraordinary capabilities of mucin proteins to host hydrophobic dyes. It is shown that large variety of luminescent films can be formed.
We suggest a universal method for the mass production of nanometer-sized molecular transistors. This vertical-type device was fabricated using conventional photolithography and self-assembly methods and was processed in parallel fashion. We used this transistor to investigate the transport properties of a single layer of bovine serum albumin protein. This 4-nm-channel device exhibits low operating voltages, ambipolar behavior, and high gate sensitivity. The operation mechanism of this new device is suggested, and the charge transfer through the protein layer was explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.