A novel class of micro-electrodes was fabricated by synthesizing high density carbon nanotube islands on lithographically defined, passivated titanium nitride conductors on a silicon dioxide substrate. Electrochemical characterization in phosphate buffered saline of these new electrodes reveals superb electrochemical properties marked by featureless rectangular cyclic voltammetry curves corresponding to a DC surface specific capacitance and a volume specific capacitance as high as 10 mF cm(-2) and 10 F cm(-3), respectively. These electrodes are also characterized by a slowly varying impedance magnitude over the range of 1 Hz to 20 kHz. High fidelity extracellular recordings from cultured neurons were performed and analysed to validate the effectiveness of the fabricated electrodes. The enhanced electrochemical properties of the electrodes, their flexible and simple micro-fabrication preparation procedure as well as their bio-compatibility and durability suggest that carbon nanotube electrodes are a promising platform for high resolution capacitive electrochemical applications.
We suggest a universal method for the mass production of nanometer-sized molecular transistors. This vertical-type device was fabricated using conventional photolithography and self-assembly methods and was processed in parallel fashion. We used this transistor to investigate the transport properties of a single layer of bovine serum albumin protein. This 4-nm-channel device exhibits low operating voltages, ambipolar behavior, and high gate sensitivity. The operation mechanism of this new device is suggested, and the charge transfer through the protein layer was explored.
Molecular‐based electroactive devices (see image) are constructed using nanocavity architecture and ferrocene‐based molecular structures. The reliable operation of these devices is demonstrated by transport measurements. Two negative differential resistance peaks are observed indicating that both redox and resonance transport processes occur.
A vertical gate symmetrical molecular transistor is demonstrated. It includes self-assembled monolayer of ferrocene molecules chemically bonded to be a flat Au source and Au nanoparticles drain electrodes while gated with the central gate electrode. Using this configuration, we show that negative differential resistance, symmetrical behavior, and rectification effects can be tuned by controlling the gate voltage. The I−V curves shift from symmetric to strongly rectifying over a gate voltage range of a few tenths of volts around a threshold value where the junction behaves symmetrically. This is due to charging of the nanoparticle contact, which modifies the spatial profile of the voltage across the junction, a fact that we have included in a simple theoretical model that explains our experimental results quite well. Our device design affords a new way to fine-tune the rectification of molecular devices in a way that does not necessarily involve the Coulomb charging of the wire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.