Replacement of peripheral nerve autografts with tissue engineered nerve grafts will potentially resolve the lack of nerve tissue especially in patients with severe concomitant soft tissue injuries. This study attempted to fabricate a tissue engineered nerve graft composed of electrospun PCL conduit filled with collagen‐hyaluronic acid (COL‐HA) sponge with different COL‐HA weight ratios including 100:0, 98:2, 95:5 and 90:10. The effect of HA addition on the sponge porosity, mechanical properties, water absorption and degradation rate was assessed. A good cohesion between the electrospun PCL nanofibers and COL‐HA sponges were seen in all sponges with different HA contents. Mechanical properties of PCL nanofibrous layer were similar to the rat sciatic nerve; the ultimate tensile strength was 2.23 ± 0.35 MPa at the elongation of 35%. Additionally, Schwann cell proliferation and morphology on three dimensional (3D) composite scaffold were evaluated by using MTT and SEM assays, respectively. Rising the HA content resulted in higher water absorption as well as greater pore size and porosity, while a decrease in Schwann cell proliferation compared to pure collagen sponge, although reduction in cell proliferation was not statistically significant. The lower Schwann cell proliferation on the COL‐HA was attributed to the greater degradation rate and pore size of the COL‐HA sponges. Also, dorsal root ganglion assay showed that the engineered 3D construct significantly increases axon growth. Taken together, these results suggest that the fabricated 3D composite scaffold provide a permissive environment for Schwann cells proliferation and maturation and can encourage axon growth.
Previous in vitro and in vivo studies have indicated that tissue engineering scaffolds, including Schwann cells, may improve axonal regeneration, particularly in combination with Methylprednisolone as an influential neuroprotective factor. The primary aim of this study was to design composite electrospun scaffolds based on polylactic acid (PLA)/hyaluronic acid (HA) containing various percentages (0.05–2% (w/v)) of Methylprednisolone (MP) with suitable mechanical and chemical properties for soft tissue especially to promote nerve growth. For the first time, MP was implicated in a PLA/HA nanofibrous and its effect on fiber’s properties was scrutinized as a candidate for nerve tissue engineering. In addition, morphology, chemical bonding, wettability, and degradation of the scaffolds were examined to evaluate their performance. The results showed the PLA/HA scaffolds had suitable morphological, physicochemical, and mechanical properties for nerve regeneration. Also, various percentages of MP were evaluated through physiochemical assay, drug release profile, and biological assays to find an optimum level of drug. These scaffolds may improve the growth and viability of Schwann cells. Results showed that composite scaffolds containing 0.5 w/v MP had lower cytotoxicity and higher biocompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.