Abstract. In this work, a system for recognizing activities in the home setting using a set of small and simple state-change sensors is introduced. The sensors are designed to be "tape on and forget" devices that can be quickly and ubiquitously installed in home environments. The proposed sensing system presents an alternative to sensors that are sometimes perceived as invasive, such as cameras and microphones. Unlike prior work, the system has been deployed in multiple residential environments with non-researcher occupants. Preliminary results on a small dataset show that it is possible to recognize activities of interest to medical professionals such as toileting, bathing, and grooming with detection accuracies ranging from 25% to 89% depending on the evaluation criteria used 1 .
Abstract. We study activity recognition using 104 hours of annotated data collected from a person living in an instrumented home. The home contained over 900 sensor inputs, including wired reed switches, current and water flow inputs, object and person motion detectors, and RFID tags. Our aim was to compare different sensor modalities on data that approached "real world" conditions, where the subject and annotator were unaffiliated with the authors. We found that 10 infra-red motion detectors outperformed the other sensors on many of the activities studied, especially those that were typically performed in the same location. However, several activities, in particular "eating" and "reading" were difficult to detect, and we lacked data to study many fine-grained activities. We characterize a number of issues important for designing activity detection systems that may not have been as evident in prior work when data was collected under more controlled conditions.
In this paper, we present a real-time algorithm for automatic recognition of not only physical activities, but also, in some cases, their intensities, using five triaxial wireless accelerometers and a wireless heart rate monitor. The algorithm has been evaluated using datasets consisting of 30 physical gymnasium activities collected from a total of 21 people at two different labs. On these activities, we have obtained a recognition accuracy performance of 94.6% using subject-dependent training and 56.3% using subjectindependent training. The addition of heart rate data improves subject-dependent recognition accuracy only by 1.2% and subject-independent recognition only by 2.1%. When recognizing activity type without differentiating intensity levels, we obtain a subjectindependent performance of 80.6%. We discuss why heart rate data has such little discriminatory power.
We introduce the PlaceLab, a new "living laboratory" for the study of ubiquitous technologies in home settings. The PlaceLab is a tool for researchers developing context-aware and ubiquitous interaction technologies. It complements more traditional data gathering instruments and methods, such as home ethnography and laboratory studies. We describe the data collection capabilities of the laboratory and current examples of its use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.