A molecularly imprinted polymer was synthesized for the purpose of sinapic acid isolation from Egyptian nutraceutical Botrytis italica, L. (broccoli) due to its prominent medicinal and wide pharmacological activities. A computational study was first developed to determine the optimal template to functional monomer molar ratio. Based on the computational results, five polymers were synthesized using a bulk polymerization method with sinapic acid as the template molecule. Evaluation of the synthesized polymers binding performance was carried out using batch rebinding assay, which revealed that the molecularly imprinted polymer of molar ratio (1:4:20), template to functional monomer (4-vinyl pyridine) to crosslinker (ethylene glycol dimethacrylate) was of optimum performance, thus, this polymer was applied for sinapic acid isolation from closely related analogues. This represents a more practical approach to isolate sinapic acid from different natural extracts selectively.
The present study describes the fabrication of molecularly imprinted (MI) magnetic beaded fibers using electrospinning. Rosmarinic acid was selected as exemplary yet relevant template during molecular imprinting. A “design of experiments” methodology was used for optimizing the electrospinning process. Four factors, i.e., the concentration of the biodegradable polymer (polycaprolactone), the applied voltage, the flow rate, and the collector distance were varied in a central composite design. The production process was then optimized according to the suitability of the beaded fibers during microrobot fabrication, actuation, and drug release. The optimum average fiber diameter of MI beaded fibers was determined at 857 ± 390 nm with an average number of beads at 0.011 ± 0.002 per µm2. In vitro release profiles of the optimized MI beaded fibers revealed a lower burst rate and a more sustained release when compared to control fibers. Magnetic control of the MI beaded fibers was successfully tested by following selected waypoints along a star-shaped predefined trajectory. This study innovatively combines molecular imprinting technology with magnetic microrobots enabling targeted drug delivery systems that offer precise motion control via the magnetic response of microrobots along with selective uptake of a drug into the microrobot using MI beaded fibers in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.