A transformation-induced plasticity (TRIP) steel and a dual-phase (DP) steel were paired together by employing gas metal arc welding (GMAW) and laser beam welding (LBW) processes. The post-weld microstructure, the hardness profile, and the uniaxial tensile behavior of the welded steels have been analyzed in detail. The experimental surface residual stress distribution across the weldment was measured through the X-ray diffraction sin2Ψ technique. The results indicate that although a harder microstructure composed of predominant martensite was observed along the weldment, the uniaxial tensile behavior resulted in better elongation properties and a higher UTS in the LBW specimen as compared to the GMAW specimen. The resultant residual stress distribution in the heat-affected zone (HAZ) had an increase to a maximum value, followed by a steady decrease up to the base metal following the trend: upper-critical UC-HAZ (maximum) → inter-critical IC-HAZ (moderated) → subcritical SC-HAZ (lowered), which was particularly more evident on the GMAW specimen. Overall, the resultant residual stresses along the weldment were lower on the LBW specimen (172 MPa maximum) which clearly contrasts to the GMAW specimen (421 MPa maximum). Finally, the tensile residual stresses in both the GMAW or LBW did not influence the overall tensile properties of the weldments.
Hydrological cycle research requires a detailed analysis of the involved parameters to understand watershed behavior comprehensively. In recent decades, both Geographic Information Systems (GIS) and Digital Elevation Models (DEMs) were implemented and took a substantial role in watershed geomorphological parameterization; however, the variability of these instruments remains a challenge, together with high-resolution DEMs being unavailable, requiring digital processing to improve resolution. This research aims to merge DEMs and evaluate GIS geoprocessing algorithms to determine drainage networks and the geomorphological parametrization of a semiarid watershed. DEMs with resolutions of 1.5, 5, 12.5, and 30 m, the Jenson/Domingue (J/D) and Wang/Liu (W/L) fill algorithms; and D8, D, KRA, and MFD flow routing algorithms were used. One of the research findings proved that the divergences of the drainage networks are mainly attributed to filling algorithms and not flow routing algorithms; the shifts between the networks obtained in the processes reach horizontal distances up to 300 m. Since the water movement within the watershed depends on geomorphological characteristics, it is suggested that DEM-based hydrological studies specify both the resolution and the algorithms used in the parametrization to validate the rigidity of the research, improving estimate areas of high hydrological risk.
En el presente trabajo se realizaron recubrimientos superficiales de carburo de tungsteno sobre un substrato de acero del tipo AISI 1018 mediante el proceso de rociado térmico utilizando tres diferentes tipos de flama: carburante, neutra y oxidante. Los resultados indican que los valores de porosidad son menores bajo condición de flama carburante con una microestructura compuesta de partículas semi-fundidas y sin fundir, de estructura no laminar, y con presencia de líneas de óxidos. La dureza medida en el recubrimiento de condición carburante resultó por encima de los 1000Hv debido a la presencia de partículas duras de WC y de W2C. Así mismo, los recubrimientos realizados bajo condición de flama carburante resultaron en una resistencia al desgaste bastante aceptable de acuerdo al análisis realizado bajo diferentes condiciones de carga y tiempo de deslizamiento. Finalmente se concluye que las partículas presentes de carburo de tungsteno y la dureza relativamente de éstas influyeron en la resistencia al desgaste de estos recubrimientos a pesar de la porosidad aparente observada. Palabras clave: Carburo de tungsteno, desgaste por deslizamiento, porosidad, rociado térmico.
In the present study, the microstructure evolution of WC-10Co-4Cr powder deposited on AISI-SAE 1020 steel substrate by laser cladding was evaluated, considering the effect of average energy per unit area. Single tracks were obtained by employing a Yb: YAG laser system with selected processing parameters. All samples were sectioned in the transverse direction for further characterization of the cladding. Results showed that dilution lay within 15% and 25%, whereas porosity was measured below 12%. According to microstructural analyses, considerable grain growth is developed within the central area of the cladding (namely, the inner region); additionally, the development of a triangular and/or polygonal morphology for WC particles along with a clear reduction in hardness was observed when employing a high average energy. It is worth noting that, in spite of the rapid thermal cycles developed during laser cladding of WC-10Co-4Cr, grain growth is attributed to a coalescence mechanism due to complete merging of WC into larger particles. Finally, the presence of small round or ellipsoidal particles within the inner region of the cladding suggested that non-merged particles occurred due to both an inhomogeneous dispersion and the lack of faced-shaped WC particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.