Advancements in the fabrication of microfluidic and nanofluidic devices and the study of liquids in confined geometries rely on understanding the boundary conditions for the flow of liquids at solid surfaces. Over the past ten years, a large number of research groups have turned to investigating flow boundary conditions, and the occurrence of interfacial slip has become increasingly well-accepted and understood. While the dependence of slip on surface wettability is fairly well understood, the effect of other surface modifications that affect surface roughness, structure and compliance, on interfacial slip is still under intense investigation. In this paper we review investigations published in the past ten years on boundary conditions for flow on complex surfaces, by which we mean rough and structured surfaces, surfaces decorated with chemical patterns, grafted with polymer layers, with adsorbed nanobubbles, and superhydrophobic surfaces. The review is divided in two interconnected parts, the first dedicated to physical experiments and the second to computational experiments on interfacial slip of simple (Newtonian) liquids on these complex surfaces. Our work is intended as an entry-level review for researchers moving into the field of interfacial slip, and as an indication of outstanding problems that need to be addressed for the field to reach full maturity.
We investigated the boundary conditions for flow of a Newtonian liquid over soft interfaces by measuring hydrodynamic drainage forces with colloid probe atomic force microscopy in a viscous liquid. The investigated soft surfaces are end-grafted brushes of thiolated poly(ethylene glycol) (PEG), of molecular weight 1k and 30k, grafted-to gold. The conditions for brush preparation were optimized as to meet the stringent conditions required for surface force measurements, namely reproducible and uniform surface composition and roughness. The fit of a slip model to the experimental data returned a slip length of 16 nm on the PEG 1k brush and 25 nm on the PEG30k brush. The slip length can be interpreted as a penetration length, which accounts for flow within the top half of the brush for the PEG30k case, and within the brush and surface roughness for the PEG1k case. These findings confirm earlier simulation studies by our group on the flow of liquids within polymer brushes.
Analysis of the adhesive contact between solids makes use of contact mechanics, surface physics, and fracture mechanics. The elastic adhesive contacts have been intensively studied, and now, interest still remains about how the viscoelasticity of the solids may be taken into account for the calculation of the work of adhesion, the major difficulty being to separate the surface and bulk energy dissipations. This paper describes a new and original experimental device for "dynamic JKR" tests, which allows us to study dynamic adhesive contacts under a cyclic normal load. PDMS contacts on PDMS were studied at different frequencies and temperatures, and it was possible using the JKR model to determine the hysteretic value of the work of adhesion. The results obtained follow the same evolution as the loss factor of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.