We report the results of a 28-day oral exposure study in rats, exposed to <20 nm noncoated, or <15 nm PVP-coated silver nanoparticles ([Ag] = 90 mg/kg body weight (bw)), or AgNO(3) ([Ag] = 9 mg/kg bw), or carrier solution only. Dissection was performed at day 29, and after a wash-out period of 1 or 8 weeks. Silver was present in all examined organs with the highest levels in the liver and spleen for all silver treatments. Silver concentrations in the organs were highly correlated to the amount of Ag(+) in the silver nanoparticle suspension, indicating that mainly Ag(+), and to a much lesser extent silver nanoparticles, passed the intestines in the silver nanoparticle exposed rats. In all groups silver was cleared from most organs after 8 weeks postdosing, but remarkably not from the brain and testis. Using single particle inductively coupled plasma mass spectrometry, silver nanoparticles were detected in silver nanoparticle exposed rats, but, remarkably also in AgNO(3) exposed rats, hereby demonstrating the formation of nanoparticles from Ag(+)in vivo that are probably composed of silver salts. Biochemical markers and antibody levels in blood, lymphocyte proliferation and cytokine release, and NK-cell activity did not reveal hepatotoxicity or immunotoxicity of the silver exposure. In conclusion, oral exposure to silver nanoparticles appears to be very similar to exposure to silver salts. However, the consequences of in vivo formation of silver nanoparticles, and of the long retention of silver in brain and testis should be considered in a risk assessment of silver nanoparticles.
BackgroundSynthetic Amorphous Silica (SAS) is commonly used in food and drugs. Recently, a consumer intake of silica from food was estimated at 9.4 mg/kg bw/day, of which 1.8 mg/kg bw/day was estimated to be in the nano-size range. Food products containing SAS have been shown to contain silica in the nanometer size range (i.e. 5 – 200 nm) up to 43% of the total silica content. Concerns have been raised about the possible adverse effects of chronic exposure to nanostructured silica.MethodsRats were orally exposed to 100, 1000 or 2500 mg/kg bw/day of SAS, or to 100, 500 or 1000 mg/kg bw/day of NM-202 (a representative nanostructured silica for OECD testing) for 28 days, or to the highest dose of SAS or NM-202 for 84 days.ResultsSAS and NM-202 were extensively characterized as pristine materials, but also in the feed matrix and gut content of the animals, and after in vitro digestion. The latter indicated that the intestinal content of the mid/high-dose groups had stronger gel-like properties than the low-dose groups, implying low gelation and high bioaccessibility of silica in the human intestine at realistic consumer exposure levels. Exposure to SAS or NM-202 did not result in clearly elevated tissue silica levels after 28-days of exposure. However, after 84-days of exposure to SAS, but not to NM-202, silica accumulated in the spleen. Biochemical and immunological markers in blood and isolated cells did not indicate toxicity, but histopathological analysis, showed an increased incidence of liver fibrosis after 84-days of exposure, which only reached significance in the NM-202 treated animals. This observation was accompanied by a moderate, but significant increase in the expression of fibrosis-related genes in liver samples.ConclusionsAlthough only few adverse effects were observed, additional studies are warranted to further evaluate the biological relevance of observed fibrosis in liver and possible accumulation of silica in the spleen in the NM-202 and SAS exposed animals respectively. In these studies, dose-effect relations should be studied at lower dosages, more representative of the current exposure of consumers, since only the highest dosages were used for the present 84-day exposure study.
SummaryProbiotics are promoted as being beneficial to health and positive effects on the immune system have been reported. Beneficial immune effects have been attributed to several mechanisms, including stimulating T helper 1 (Th1) immunity. To explore the effects of the probiotic Bifidobacterium animalis on Th1-and Th2-mediated immune responses, two different animal models representing either Th1-or Th2-mediated immune responses were used: a rat model for experimental autoimmune encephalomyelitis (EAE) (Th1) and a mouse model for respiratory allergy induced by ovalbumin (OVA) (Th2). B. animalis administration started when the mice or rats were 2 weeks old. Respiratory allergy or EAE were induced when the animals were 6-7 weeks old. In the allergy model, B. animalis modestly reduced the number of infiltrating eosinophils and lymphocytes in the lungs, but no effects on allergenspecific serum immunoglobulin E levels were found. Cytokine profiles assessed after culturing spleen cells with the mitogen concanvalin A (ConA) showed that B. animalis skewed the Th1/Th2 balance towards Th1 in females. However, allergen-induced cytokine production in females was not affected by B. animalis. In males, B. animalis significantly decreased ConA-induced interleukin-13 and a trend towards lower levels of OVA-induced Th2 cytokines. In the EAE model, B. animalis significantly reduced the duration of clinical symptoms by almost 2 days in males and improved the body weight gain during the experimental period compared with the control group. Our data show that B. animalis reduced several immune parameters in the allergy as well as in the autoimmunity model.
A previous infection with T. canis leads to exacerbation of experimental allergic airway inflammation. These results have important consequences for findings on the helminths-allergy association. Several factors, including parasite species, infection of definitive vs. accidental host, parasite load and timing of infection, may influence whether an infection with helminths protects one from or enhances allergic manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.