Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.
Immunotoxicity is defined as the toxicological effects of xenobiotics including pharmaceuticals on the functioning of the immune system and can be induced in either direct or indirect ways. Direct immunotoxicity is caused by the effects of chemicals on the immune system, leading to immunosuppression and subsequently to reduced resistance to infectious diseases or certain forms of nongenotoxic carcinogenicity.In vitro testing has several advantages over in vivo testing, such as detailed mechanistic understanding, species extrapolation (parallelogram approach), and reduction, refinement, and replacement of animal experiments. In vitro testing for direct immunotoxicity can be done in a two-tiered approach, the first tier measuring myelotoxicity. If this type of toxicity is apparent, the compound can be designated immunotoxic. If not, the compound is tested for lymphotoxicity (second tier). Several in vitro assays for lymphotoxicity exist, each comprising specific functions of the immune system (cytokine production, cell proliferation, cytotoxic T-cell activity, natural killer cell activity, antibody production, and dendritic cell maturation). A brief description of each assay is provided. Only one assay, the human whole blood cytokine release assay, has undergone formal prevalidation, while another one, the lymphocyte proliferation assay, is progressing towards that phase.Progress in in vitro testing for direct immunotoxicity includes prevalidation of existing assays and selection of the assay (or combination of assays) that performs best. To avoid inter-species extrapolation, assays should preferably use human cells. Furthermore, the use of whole blood has the advantage of comprising multiple cell types in their natural proportion and environment. The so-called "omics" techniques provide additional mechanistic understanding and hold promise for the characterization of classes of compounds and prediction of specific toxic effects. Technical innovations such as high-content screening and high-throughput analysis will greatly expand the opportunities for in vitro testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.