Benzene is a widespread volatile compound and an environmental contaminant. Since it causes important toxic effects in workers exposed to low levels, long-term exposure to this compound has been extensively studied. Leukemia, blood disorders, bone marrow depression, and some types of cancer are directly related to benzene-initiated toxicity. Bioactivation of benzene can lead to the formation of hazardous metabolites such as phenol, hydroquinone, and catechol. Catechol forms semiquinones and reactive quinones that are presumed to play an important role in the generation of reactive oxygen species (ROS). ROS formation can directly induce single and double strand breaks in the DNA, oxidized nucleotides, and hyper-recombination, and consequently produces deleterious genetic changes. In this review, we have addressed the cytotoxic effects of benzene and its main metabolite, catechol, focusing on the oxidative pathway and further DNA damage.
Parkinson's disease (PD) is one of the most important neurodegenerative worldwide disorders. The potential cytoprotective effects of aqueous extract of Valeriana officinalis on rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells were demonstrated. The cytotoxicity, cell viability and analysis of cellular morphology were performed by MTT-tetrazole (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and phase contrast microscopy, respectively. Significant changes in the cellular morphology, and condensation of the cell body could be observed when cells were treated with 300 nM rotenone for 48 h. Three different concentrations of Valeriana officinalis extract were used (0.049, 0.098 and 0.195 mg/mL). These extracts brought about an increase of 7.0 +/- 1.3%, 14.5 +/- 1.3% and 14.5 +/- 3.2% in cell viability. Our results indicated that neuroprotector action of the Valeriana officinalis extract provides support for later studies as they help understanding this drug for the development of cytoprotective various therapies in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.