Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.
Nuclear factor-kappa B (NF-κB), an important pro-inflammatory factor, is a crucial regulator of cell survival. Both lipopolysaccharide (LPS) and tumour necrosis factor (TNF)-α activate NF-κB signalling. Oestrogens were shown to suppress NF-κB activation. Oestrogens exert a sensitising action to pro-apoptotic stimuli such as LPS and TNF-α in anterior pituitary cells. In the present study, we show by western blotting that 17β-oestradiol (E(2)) decreases TNF-α-induced NF-κB/p65 and p50 nuclear translocation in primary cultures of anterior pituitary cells from ovariectomised (OVX) rats. Also, the in vivo administration of E(2) decreases LPS-induced NF-κB/p65 and p50 nuclear translocation. To investigate whether the inhibition of NF-κB pathway sensitises anterior pituitary cells to pro-apoptotic stimuli, we used an inhibitor of NF-κB activity, BAY 11-7082 (BAY). BAY, at a concentration that fails to induce apoptosis, has permissive action on TNF-α-induced apoptosis of lactotrophs and somatotrophs from OVX rats, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Pharmacological inhibition of NF-κB signalling enhances E(2)-sensitising effect to TNF-α-induced apoptosis in lactotrophs but not in somatotrophs. In vivo administration of BAY allowed LPS-induced apoptosis in anterior pituitary cells from OVX rats (determined by fluorescence activated cell sorting). Furthermore, LPS-induced expression of Bcl-xL in pituitaries of OVX rats is decreased by E(2) administration. Our results show that inhibition of the NF-κB signalling pathway sensitises anterior pituitary cells to the pro-apoptotic action of LPS and TNF-α. Because E(2) inhibits LPS- and TNF-α-activated NF-κB nuclear translocation, the present study suggests that E(2) sensitises anterior pituitary cells to TNF-α- and LPS-induced apoptosis by inhibiting NF-κB activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.