In the current study, the relationships between functional properties and average molecular weight (AMW) of collagen hydrolysates from Spanish mackerel (Scomberomorous niphonius) skin were researched. Seven hydrolysate fractions (5.04 ≤ AMW ≤ 47.82 kDa) from collagen of Spanish mackerel skin were obtained through the processes of acid extraction, proteolysis, and fractionation using gel filtration chromatography. The physicochemical properties of the collagen hydrolysate fractions were studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), gel filtration chromatography, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The results indicated that there was an inverse relationship between the antioxidant activities and the logarithm of the AMW of the hydrolysate fractions in the tested AMW range. However, the reduction of AMW significantly enhanced the solubility of the hydrolysate fractions, and a similar AMW decrease of the hydrolysate fractions negatively affected the emulsifying and foaming capacities. This presented as a positive
OPEN ACCESSMolecules 2014, 19 11212 correlation between the logarithm of AMW and emulsion stability index, emulsifying activity index, foam stability, and foam capacity. Therefore, these collagen hydrolysates with excellent antioxidant activities or good functionalities as emulsifiers could be obtained by controlling the effect of the digestion process on the AMW of the resultant hydrolysates.
Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%), hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%), and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03%) and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively), small molecular sizes (3–6 peptides), low molecular weights (524.78 kDa), and amino acid sequences (antioxidant score 6.11). This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis) dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.