Background Broilers are continuously stressed because of the rapid growth rate and the environmental issues associated with industrialized poultry production systems, which lead to higher susceptibility for infection with pathogens. It is well known that vitamin E (Vit. E) and selenium (Se) supplementation have protective functions in such stressful conditions. This protocol was to investigate the impact of Vit. E and/or Se on the production performance, some serum biochemistry, and expression of some growth-related gene in the liver tissue of the broilers. The day-old chicks were allotted into four groups according to the supplement; Control group and groups supplemented with Vit. E and/or Se into Vit. E group (100 mg Vit. E/kg diet), Se group (0.3 mg sodium selenite/kg diet), and Vit E + Se group that supplemented with both Vit. E and Se. Results The data of the present experiment showed that dietary inclusion of Vit. E and/or Se significantly (P ≤ 0.05) improved the production parameters without any side effect on the general health status of the broilers, which indicated by normal serum biochemical parameters. Moreover, the treatments positively affected the expression of some genes related to growth performance including growth hormone receptor (GHR) and insulin-like growth factor 1 (IGF1) in the liver tissue of broilers. Conclusion Dietary supplementation of Vit. E and/or Se improved the production parameters and upregulate the growth-related genes without effect on the general health status of the broilers.
Background In contrast to free radicals, the first line of protection is assumed to be vitamin E and selenium. The present protocol was designed to assess the roles of vitamin E and/or a selenium-rich diet that affected the blood iron and copper concentrations, liver tissue antioxidant and lipid peroxidation, and gene expression linked to antioxidants in the liver tissue of broilers. The young birds were classified according to the dietary supplement into four groups; control, vitamin E (100 mg Vitamin/kg diet), selenium (0.3 mg sodium selenite/kg diet), and vitamin E pulse selenium (100 mg vitamin/kg diet with 0.3 mg sodium selenite/kg diet) group. Results The results of this experiment suggested that the addition of vitamin E with selenium in the broiler diet significantly increased (P ≤ 0.05) serum iron when compared with the other groups and serum copper when compared with the vitamin E group. Moreover, the supplements (vitamin E or vitamin E with selenium) positively affected the enzymatic activity of the antioxidant-related enzymes with decreased malondialdehyde (MDA),which represents lipid peroxidation in broiler liver tissue. Moreover, the two supplements significantly upregulated genes expression related to antioxidants. Conclusion Therefore, vitamin E and/or selenium can not only act as exogenous antioxidants to prevent oxidative damage by scavenging free radicals and superoxide, but also act as gene regulators, regulating the expression of endogenous antioxidant enzymes.
Nonalcoholic fatty liver disease (NAFLD) is a condition that affects about 24% of people worldwide. Increased liver fat, inflammation, and, in the most severe cases, cell death are all characteristics of NAFLD. However, NAFLD pathogenesis and therapy are still not clear enough. Thus, this study aimed to determine the effect of a high-cholesterol diet (HCD) inducing NAFLD on lipolytic gene expression, liver function, lipid profile, and antioxidant enzymes in rabbits and the modulatory effects of probiotic Lactobacillus acidophilus (L. acidophilus) on it. A total of 45 male New Zealand white rabbits, eight weeks old, were randomly divided into three groups of three replicates (5 rabbits/replicate). Rabbits in group I were given a basal diet; rabbits in group II were given a high-cholesterol diet that caused NAFLD; and rabbits in group III were given a high-cholesterol diet as well as probiotics in water for 8 weeks. The results showed that a high-cholesterol diet caused hepatic vacuolation and upregulated the genes for lipoprotein lipase (LPL), hepatic lipase (HL), and cholesteryl ester transfer protein (CETP). Downregulated low-density lipoprotein receptor (LDLr) gene, increased liver enzymes [alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH)], cholesterol, triglycerides (TG), low-density lipoprotein (LDL), glucose, and total bilirubin. On the other hand, it decreased high-density lipoprotein (HDL), total protein, albumin, and liver antioxidants [glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), and superoxide dismutase (SOD)]. Supplementing with probiotics helped to return all parameters to normal levels. In conclusion, probiotic supplementation, especially L. acidophilus, protected against NAFLD, and restored lipolytic gene expression, liver functions, and antioxidants to normal levels.
Objective: The main objective of this study is to investigate the antioxidant and nephroprotective efficacy of moringa oleifera seed extract (MOSE) against cisplatin which induced acute renal injury. Methods: Forty male Wister rats were equally segregated into 4 groups (10 rats per group): group I (0.5 ml of sterile saline orally), group II (200 mg MOSE/kg b. wt orally for 10 consecutive days), group III (7.5 mg cisplatin/kg b. wt/intraperitonially as a single dose on the 5th day of the experiment) and group IV (200 mg moringa oleifera seed extract (MOSE)/kg orally for 10 d followed by 7.5 mg cisplatin/kg body weight/intraperitonially once as a single dose on the 5th day of the experiment. Serum biochemical analysis of renal biomarkers (urea, uric acid, and creatinine), oxidative stress markers (malondialdehyde [MDA]), a crucial antioxidant enzyme (catalase) and the expression of renal activity interleukin (IL)-6, (IL)-10 and Tumer necrotic factor (TNF-α) mRNA were determined. Histopathological examination of renal tissue was done. Results: Cisplatin induced renal damage, increased renal biomarkers (urea, creatinine and uric acid)(375.87±1.65, 5.238±0.25, 4.47±0.25). Tissue concentrations of malondialdehyde, IL-6 and TNF-α.(387.56±0.97, 2.188±0.20, 3.06±0.27)compared to control group(140.58±1.25,0.938±0.017, 1.24±0.17), (163.99±1.34, 1.008±0.05, 0.982±0.026) Moreover, cisplatin induced significantly down-regulation of anti-inflammatory (IL-10) and catalase (0.780±0.47, 1.62±0.06) compared to control one (1.010±0.02, 3.12±0.11),. The histopathological examination showed renal tissue damage and degeneration of tubules in the cortical portion in cisplatin group. However, interestingly concurrent adminsteration of the MOSE with cisplatin can alleviated the renal damage, oxidative stress and renal toxicity caused by cisplatin. Conclusion: These results suggest that the antioxidant and the anti-inflammatory effects of MOSE alleviate the cisplatin-induced nephrotoxicity.
Acute Renal Failure (ARF) has traditionally been defined as the abrupt and progressive loss of kidney functions resulting in the retention of urea and other nitrogenous waste products associated with interstitial inflammation, tubular injury and increasing Tumor Necrosis Factor (TNF). Mortality in patients with ARF remains high >50% in severely ill patients. Klotho gene is a new anti-aging gene. Genetic mutation of klotho gene causes multiple premature aging-like phenotypes and shortens lifespan. Klotho gene is highly expressed in the kidney and a soluble form of klotho functions as an endocrine substance that exerts multiple actions including the modulation of renal solute transport and the protection of the kidney. This study aimed to clarify the pre treatment and/or post treatment effect of vitamin E as an antioxidant on kidney functions, klotho gene expression and glutathione peroxidase-1 gene expression among rats with acute renal failure. Using glycerol as oxidative stress factor to cause acute renal failure and Real time PCR for assessment of gene expression of target gene in the control and treated groups. Our results demonstrated that the vitamin E (α tocopherol) as antioxidant factor decreased the kidney injuries as pre renal failure administer and improve kidney function as post renal failure administer. Those effects were through up regulating the Klotho as anti aging gene and the Glutathione Peroxidase (GPx-1) as antioxidant gene expression in the kidney tissue. We concluded that factors those up regulate the klotho gene expression can use as protective factors against kidney injuries and to improve kidney function in renal failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.