The benefits of human milk are mediated by multiple nutritional, trophic, and immunological components, able to promote infant's growth, maturation of its immature gut, and to confer protection against infections. Despite these widely recognized properties, breast-feeding represents an important mother-to-child transmission route of some viral infections. Different studies show that some flaviviruses can occasionally be detected in breast milk, but their transmission to the newborn is still controversial. The aim of this study is to investigate the antiviral activity of human milk (HM) in its different stages of maturation against two emerging flaviviruses, namely Zika virus (ZIKV) and Usutu virus (USUV) and to verify whether HMderived extracellular vesicles (EVs) and glycosaminoglycans (GAGs) contribute to the milk protective effect. Colostrum, transitional and mature milk samples were collected from 39 healthy donors. The aqueous fractions were tested in vitro with specific antiviral assays and EVs and GAGs were derived and characterized. HM showed antiviral activity against ZIKV and USUV at all the stages of lactation with no significant differences in the activity of colostrum, transitional or mature milk. Mechanism of action studies demonstrated that colostrum does not inactivate viral particles, but it hampers the binding of both flaviviruses to cells. We also demonstrated that HM-EVs and HM-GAGs contribute, at least in part, to the anti-ZIKV and anti-USUV action of HM. This study discloses the intrinsic antiviral activity of HM against ZIKV and USUV and demonstrates the contribution of two bioactive components in mediating its protective effect. Since the potential infectivity of HM during ZIKV and USUV infection is still unclear, these data support the World Health Organization recommendations about breast-feeding during ZIKV infection and could contribute to producing new guidelines for a possible USUV epidemic.
Chondroitin sulfate/dermatan sulfate (CS/DS) was extracted from Atlantic bluefin tuna (Thunnus thynnus) skin (SGAT) and was purified and characterized. SGAT was characterized by acetate cellulose electrophoresis, FTIR spectroscopy, 13 C NMR spectroscopy and SAX-HPLC. According to the results obtained for specific chondroitinases (ABC and AC) and the SAX-HPLC separation of generated unsaturated repeating disaccharides, the polymer was found to contain a disaccharide monosulfated in positions 6 and 4 of GalNAc and disulfated disaccharides in different percentages. These results were confirmed by 13 C NMR experiments. The average molecular mass was 24.07 kDa, as determined by PAGE analysis. SGAT was evaluated for its in vitro anticoagulant activity via activated partial thromboplastin time, thrombin time and prothrombin time tests. The polymer showed strong inhibitory activity against angiotensin I-converting enzyme (IC 50 ¼ 0.25 mg mL À1 ). Overall, the results suggest that this newly extracted CS/DS can be useful for pharmacological applications. Fig. 3 (A) Anticoagulant activity of the purified CS/DS from Atlantic bluefin tuna skin (SGAT) at different concentrations evaluated by measurement of the activated partial thromboplastin time (aPTT). (B) Anticoagulant activity of SGAT at different concentrations evaluated by measurement of the thrombin time (TT). (C) Anticoagulant activity of SGAT at different concentrations evaluated by measurement of the prothrombin time (PT). All results are expressed as mean AE SD (n ¼ 3) and all measurements were performed in triplicate. 37972 | RSC Adv., 2018, 8, 37965-37975 This journal is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.