Long noncoding RNAs (lncRNA) have been implicated in human cancer but their mechanisms of action are mainly undocumented. In this study, we investigated lncRNA alterations that contribute to gastric cancer through an analysis of The Cancer Genome Atlas RNA sequencing data and other publicly available microarray data. Here we report the gastric cancer-associated lncRNA HOXA11-AS as a key regulator of gastric cancer development and progression. Patients with high HOXA11-AS expression had a shorter survival and poorer prognosis. In vitro and in vivo assays of HOXA11-AS alterations revealed a complex integrated phenotype affecting cell growth, migration, invasion, and apoptosis. Strikingly, high-throughput sequencing analysis after HOXA11-AS silencing highlighted alterations in cell proliferation and cell-cell adhesion pathways. Mechanistically, EZH2 along with the histone demethylase LSD1 or DNMT1 were recruited by HOXA11-AS, which functioned as a scaffold. HOXA11-AS also functioned as a molecular sponge for miR-1297, antagonizing its ability to repress EZH2 protein translation. In addition, we found that E2F1 was involved in HOXA11-AS activation in gastric cancer cells. Taken together, our findings support a model in which the EZH2/HOXA11-AS/LSD1 complex and HOXA11-AS/miR-1297/EZH2 cross-talk serve as critical effectors in gastric cancer tumorigenesis and progression, suggesting new therapeutic directions in gastric cancer. Cancer Res; 76(21); 6299-310. ©2016 AACR.
Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases, including cancers. However, the overall biological roles and clinical significance of most lncRNAs in gastric carcinogenesis are not fully understood. We investigated the clinical significance, biological function, and mechanism of LINC01234 in gastric cancer. First, we analyzed LINC01234 alterations in gastric cancerous and noncancerous tissues through an analysis of sequencing data obtained from The Cancer Genome Atlas. Next, we evaluated the effect of LINC01234 on the gastric cancer cell proliferation and apoptosis, and its regulation of miR-204-5p by acting as a competing endogenous RNA (ceRNA). The animal model was used to support the experimental findings. We found that LINC01234 expression was significantly upregulated in gastric cancer tissues and was associated with larger tumor size, advanced TNM stage, lymph node metastasis, and shorter survival time. Furthermore, knockdown of LINC01234-induced apoptosis and growth arrest and inhibited tumorigenesis in mouse xenografts. Mechanistic investigations indicated that LINC01234 functioned as a ceRNA for miR-204-5p, thereby leading to the derepression of its endogenous target core-binding factor β (CBFB). LINC01234 is significantly overexpressed in gastric cancer, and LINC01234-miR-204-5p-CBFB axis plays a critical role in gastric cancer tumorigenesis. Our findings may provide a potential new target for gastric cancer diagnosis and therapy. .
BackgroundRecent evidence indicates that long noncoding RNAs (lncRNAs) play a critical role in the regulation of cellular processes, such as differentiation, proliferation and metastasis. These lncRNAs are found to be dysregulated in a variety of cancers. BRAF activated non-coding RNA (BANCR) is a 693-bp transcript on chromosome 9 with a potential functional role in melanoma cell migration. The clinical significance of BANCR, and its’ molecular mechanisms controlling cancer cell migration and metastasis are unclear.MethodsExpression of BANCR was analyzed in 113 non-small cell lung cancer (NSCLC) tissues and seven NSCLC cell lines using quantitative polymerase chain reaction (qPCR) assays. Gain and loss of function approaches were used to investigate the biological role of BANCR in NSCLC cells. The effects of BANCR on cell viability were evaluated by MTT and colony formation assays. Apoptosis was evaluated by Hoechst staining and flow cytometry. Nude mice were used to examine the effects of BANCR on tumor cell metastasis in vivo. Protein levels of BANCR targets were determined by western blotting and fluorescent immunohistochemistry.ResultsBANCR expression was significantly decreased in 113 NSCLC tumor tissues compared with normal tissues. Additionally, reduced BANCR expression was associated with larger tumor size, advanced pathological stage, metastasis distance, and shorter overall survival of NSCLC patients. Reduced BANCR expression was found to be an independent prognostic factor for NSCLC. Histone deacetylation was involved in the downregulation of BANCR in NSCLC cells. Ectopic expression of BANCR impaired cell viability and invasion, leading to the inhibition of metastasis in vitro and in vivo. However, knockdown of BANCR expression promoted cell migration and invasion in vitro. Overexpression of BANCR was found to play a key role in epithelial-mesenchymal transition (EMT) through the regulation of E-cadherin, N-cadherin and Vimentin expression.ConclusionWe determined that BANCR actively functions as a regulator of EMT during NSCLC metastasis, suggesting that BANCR could be a biomarker for poor prognosis of NSCLC.
BackgroundLong noncoding RNAs (lncRNAs) have emerged as critical regulators in a variety of human cancers, including gastric cancer (GC). However, the function and mechanisms responsible for these molecules in GC are not fully understood. In our previous study, we found that GC associated lncRNA HOXA11-AS is significantly upregulated in GC tissues. Over-expressed HOXA11-AS promotes GC cells proliferation and invasion through scaffolding the chromatin modification factors PRC2, LSD1 and DNMT1.MethodsHOXA11-AS expression levels in GC cells was detected by quantitative real-time PCR (qPCR). HOXA11-AS siRNAs and overexpression vector were transfected into GC cells to down-regulate or up-regulate HOXA11-AS expression. In vitro and in vivo assays were performed to investigate the functional role of HOXA11-AS in GC cells cell cycle progression, invasion and metastasis. RIP and ChIP assays were used to determine the mechanism of HOXA11-AS’s regulation of underlying targets.ResultsWe found that knockdown of HOXA11-AS induced GC cells G0/G1 phase arrest and suppressed GC cells migration, invasion and metastasis in vivo. Moreover, mechanistic investigation showed that HOXA11-AS could interact with WDR5 and promote β-catenin transcription, bind with EZH2 and repress P21 transcription, and induce KLF2 mRNA degradation via interacting with STAU1.ConclusionsTaken together, these findings show that HOXA11-AS not only could promote GC cells migration and invasion in vitro, but also promotes GC cells metastasis in vivo, at least in part, by regulating β-catenin and KLF2.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0651-6) contains supplementary material, which is available to authorized users.
BackgroundNumerous studies have shown that long non-coding RNAs (lncRNAs) behave as a novel class of transcript during multiple cancer processes, such as cell proliferation, apoptosis, migration, and invasion. LINC00152 is located on chromosome 2p11.2, and has a transcript length of 828 nucleotides. The biological role of LINC00152 in LAD(lung adenocarcinoma) remains unknown.MethodsQuantitative reverse transcription PCR(qRT-PCR) was used to detect LINC00152 expression in 60 human LAD tissues and paired normal tissues. In vitro and in vivo studies showed the biological function of LINC00152 in tumour progression. RNA transcriptome sequencing technology was performed to identify the downstream suppressor IL24(interleukin 24) which was further examined by qRT-PCR, western bolt and rescue experiments. RNA immunoprecipitation (RIP), RNA pulldown, and Chromatin immunoprecipitation (ChIP) assays were carried out to reveal the interaction between LINC00152, EZH2 and IL24.ResultsLINC00152 expression was upregulated in 60 human LAD tissues and paired normal tissues. High levels of LINC00152 expression were correlated with advanced TNM stage, larger tumor size, and lymph node metastasis, as well as shorter survival time. Silencing of LINC00152 suppressed cell growth and induced cell apoptosis. LINC00152 knockdown altered the expression of many downstream genes, including IL24. LINC00152 could interact with EZH2 and inhibit IL24 transcription. Moreover, the ectopic expression of IL24 repressed cell proliferation and partly reversed LINC00152 overexpression-induced promotion of cell growth in LAD.ConclusionsOur study reveals an oncogenic role for LINC00152 in LAD tumorigenesis, suggesting that it could be used as a therapeutic target in LAD treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0581-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.